MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressatans Structured version   Visualization version   GIF version

Theorem ressatans 24378
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
ressatans ℝ ⊆ 𝑆
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ressatans
StepHypRef Expression
1 ax-resscn 9849 . . 3 ℝ ⊆ ℂ
2 1re 9895 . . . . . . . 8 1 ∈ ℝ
3 resqcl 12748 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦↑2) ∈ ℝ)
4 readdcl 9875 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (1 + (𝑦↑2)) ∈ ℝ)
52, 3, 4sylancr 693 . . . . . . 7 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℝ)
65recnd 9924 . . . . . 6 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℂ)
7 0re 9896 . . . . . . . . . 10 0 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 ∈ ℝ)
92a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ∈ ℝ)
10 0lt1 10399 . . . . . . . . . 10 0 < 1
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 < 1)
12 sqge0 12757 . . . . . . . . . 10 (𝑦 ∈ ℝ → 0 ≤ (𝑦↑2))
13 addge01 10387 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (0 ≤ (𝑦↑2) ↔ 1 ≤ (1 + (𝑦↑2))))
142, 3, 13sylancr 693 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 ≤ (𝑦↑2) ↔ 1 ≤ (1 + (𝑦↑2))))
1512, 14mpbid 220 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ≤ (1 + (𝑦↑2)))
168, 9, 5, 11, 15ltletrd 10048 . . . . . . . 8 (𝑦 ∈ ℝ → 0 < (1 + (𝑦↑2)))
17 ltnle 9968 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 + (𝑦↑2)) ∈ ℝ) → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
187, 5, 17sylancr 693 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1916, 18mpbid 220 . . . . . . 7 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ≤ 0)
20 mnfxr 11783 . . . . . . . . 9 -∞ ∈ ℝ*
21 elioc2 12063 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0)))
2220, 7, 21mp2an 703 . . . . . . . 8 ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0))
2322simp3bi 1070 . . . . . . 7 ((1 + (𝑦↑2)) ∈ (-∞(,]0) → (1 + (𝑦↑2)) ≤ 0)
2419, 23nsyl 133 . . . . . 6 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ∈ (-∞(,]0))
256, 24eldifd 3550 . . . . 5 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ (ℂ ∖ (-∞(,]0)))
26 atansopn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
2725, 26syl6eleqr 2698 . . . 4 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ 𝐷)
2827rgen 2905 . . 3 𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷
29 ssrab 3642 . . 3 (ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ↔ (ℝ ⊆ ℂ ∧ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷))
301, 28, 29mpbir2an 956 . 2 ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
31 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
3230, 31sseqtr4i 3600 1 ℝ ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 194  w3a 1030   = wceq 1474  wcel 1976  wral 2895  {crab 2899  cdif 3536  wss 3539   class class class wbr 4577  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795  -∞cmnf 9928  *cxr 9929   < clt 9930  cle 9931  2c2 10917  (,]cioc 12003  cexp 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-ioc 12007  df-seq 12619  df-exp 12678
This theorem is referenced by:  leibpi  24386
  Copyright terms: Public domain W3C validator