MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressatans Structured version   Visualization version   GIF version

Theorem ressatans 25512
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
ressatans ℝ ⊆ 𝑆
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ressatans
StepHypRef Expression
1 ax-resscn 10594 . . 3 ℝ ⊆ ℂ
2 1re 10641 . . . . . . . 8 1 ∈ ℝ
3 resqcl 13491 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦↑2) ∈ ℝ)
4 readdcl 10620 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (1 + (𝑦↑2)) ∈ ℝ)
52, 3, 4sylancr 589 . . . . . . 7 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℝ)
65recnd 10669 . . . . . 6 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℂ)
72a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ∈ ℝ)
8 0lt1 11162 . . . . . . . . . 10 0 < 1
98a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 < 1)
10 sqge0 13502 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 ≤ (𝑦↑2))
117, 3, 9, 10addgtge0d 11214 . . . . . . . 8 (𝑦 ∈ ℝ → 0 < (1 + (𝑦↑2)))
12 0re 10643 . . . . . . . . 9 0 ∈ ℝ
13 ltnle 10720 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 + (𝑦↑2)) ∈ ℝ) → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1412, 5, 13sylancr 589 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1511, 14mpbid 234 . . . . . . 7 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ≤ 0)
16 mnfxr 10698 . . . . . . . . 9 -∞ ∈ ℝ*
17 elioc2 12800 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0)))
1816, 12, 17mp2an 690 . . . . . . . 8 ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0))
1918simp3bi 1143 . . . . . . 7 ((1 + (𝑦↑2)) ∈ (-∞(,]0) → (1 + (𝑦↑2)) ≤ 0)
2015, 19nsyl 142 . . . . . 6 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ∈ (-∞(,]0))
216, 20eldifd 3947 . . . . 5 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ (ℂ ∖ (-∞(,]0)))
22 atansopn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
2321, 22eleqtrrdi 2924 . . . 4 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ 𝐷)
2423rgen 3148 . . 3 𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷
25 ssrab 4049 . . 3 (ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ↔ (ℝ ⊆ ℂ ∧ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷))
261, 24, 25mpbir2an 709 . 2 ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
27 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
2826, 27sseqtrri 4004 1 ℝ ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142  cdif 3933  wss 3936   class class class wbr 5066  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  2c2 11693  (,]cioc 12740  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-ioc 12744  df-seq 13371  df-exp 13431
This theorem is referenced by:  leibpi  25520
  Copyright terms: Public domain W3C validator