Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressiooinf Structured version   Visualization version   GIF version

Theorem ressiooinf 39192
Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressiooinf.a (𝜑𝐴 ⊆ ℝ)
ressiooinf.s 𝑆 = inf(𝐴, ℝ*, < )
ressiooinf.n (𝜑 → ¬ 𝑆𝐴)
ressiooinf.i 𝐼 = (𝑆(,)+∞)
Assertion
Ref Expression
ressiooinf (𝜑𝐴𝐼)

Proof of Theorem ressiooinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressiooinf.s . . . . . 6 𝑆 = inf(𝐴, ℝ*, < )
2 ressiooinf.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
3 ressxr 10027 . . . . . . . . . 10 ℝ ⊆ ℝ*
43a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3593 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
65adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
76infxrcld 39073 . . . . . 6 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
81, 7syl5eqel 2702 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
9 pnfxr 10036 . . . . . 6 +∞ ∈ ℝ*
109a1i 11 . . . . 5 ((𝜑𝑥𝐴) → +∞ ∈ ℝ*)
112adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 477 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3584 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
145sselda 3583 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
15 infxrlb 12107 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
166, 12, 15syl2anc 692 . . . . . . 7 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
171, 16syl5eqbr 4648 . . . . . 6 ((𝜑𝑥𝐴) → 𝑆𝑥)
18 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝑆𝑥 = 𝑆)
1918eqcomd 2627 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑆 = 𝑥)
2019adantl 482 . . . . . . . . . . 11 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
21 simpl 473 . . . . . . . . . . 11 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2220, 21eqeltrd 2698 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2322adantll 749 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
24 ressiooinf.n . . . . . . . . . 10 (𝜑 → ¬ 𝑆𝐴)
2524ad2antrr 761 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2623, 25pm2.65da 599 . . . . . . . 8 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
2726neqned 2797 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝑆)
2827necomd 2845 . . . . . 6 ((𝜑𝑥𝐴) → 𝑆𝑥)
298, 14, 17, 28xrleneltd 39000 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 < 𝑥)
3013ltpnfd 11899 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < +∞)
318, 10, 13, 29, 30eliood 39128 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝑆(,)+∞))
32 ressiooinf.i . . . 4 𝐼 = (𝑆(,)+∞)
3331, 32syl6eleqr 2709 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3433ralrimiva 2960 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
35 dfss3 3573 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3634, 35sylibr 224 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555   class class class wbr 4613  (class class class)co 6604  infcinf 8291  cr 9879  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019  (,)cioo 12117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-ioo 12121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator