MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restbas Structured version   Visualization version   GIF version

Theorem restbas 21010
Description: A subspace topology basis is a basis. 𝑌 is normally a subset of the base set of 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbas (𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)

Proof of Theorem restbas
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrest 16135 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑎 ∈ (𝐵t 𝐴) ↔ ∃𝑢𝐵 𝑎 = (𝑢𝐴)))
2 elrest 16135 . . . . . . 7 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝑏 ∈ (𝐵t 𝐴) ↔ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
31, 2anbi12d 747 . . . . . 6 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴))))
4 reeanv 3136 . . . . . 6 (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) ↔ (∃𝑢𝐵 𝑎 = (𝑢𝐴) ∧ ∃𝑣𝐵 𝑏 = (𝑣𝐴)))
53, 4syl6bbr 278 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) ↔ ∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴))))
6 simplll 813 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝐵 ∈ TopBases)
7 simplrl 817 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑢𝐵)
8 simplrr 818 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑣𝐵)
9 inss1 3866 . . . . . . . . . . 11 ((𝑢𝑣) ∩ 𝐴) ⊆ (𝑢𝑣)
10 simpr 476 . . . . . . . . . . 11 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
119, 10sseldi 3634 . . . . . . . . . 10 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → 𝑐 ∈ (𝑢𝑣))
12 basis2 20803 . . . . . . . . . 10 (((𝐵 ∈ TopBases ∧ 𝑢𝐵) ∧ (𝑣𝐵𝑐 ∈ (𝑢𝑣))) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
136, 7, 8, 11, 12syl22anc 1367 . . . . . . . . 9 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑧𝐵 (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))
14 simplll 813 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝐵 ∈ TopBases ∧ 𝐴 ∈ V))
1514simpld 474 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐵 ∈ TopBases)
1614simprd 478 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝐴 ∈ V)
17 simprl 809 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧𝐵)
18 elrestr 16136 . . . . . . . . . . 11 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V ∧ 𝑧𝐵) → (𝑧𝐴) ∈ (𝐵t 𝐴))
1915, 16, 17, 18syl3anc 1366 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ∈ (𝐵t 𝐴))
20 simprrl 821 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝑧)
21 inss2 3867 . . . . . . . . . . . 12 ((𝑢𝑣) ∩ 𝐴) ⊆ 𝐴
22 simplr 807 . . . . . . . . . . . 12 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴))
2321, 22sseldi 3634 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐𝐴)
2420, 23elind 3831 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑐 ∈ (𝑧𝐴))
25 simprrr 822 . . . . . . . . . . 11 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → 𝑧 ⊆ (𝑢𝑣))
26 ssrin 3871 . . . . . . . . . . 11 (𝑧 ⊆ (𝑢𝑣) → (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))
2725, 26syl 17 . . . . . . . . . 10 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))
28 eleq2 2719 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑐𝑤𝑐 ∈ (𝑧𝐴)))
29 sseq1 3659 . . . . . . . . . . . 12 (𝑤 = (𝑧𝐴) → (𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴) ↔ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴)))
3028, 29anbi12d 747 . . . . . . . . . . 11 (𝑤 = (𝑧𝐴) → ((𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)) ↔ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))))
3130rspcev 3340 . . . . . . . . . 10 (((𝑧𝐴) ∈ (𝐵t 𝐴) ∧ (𝑐 ∈ (𝑧𝐴) ∧ (𝑧𝐴) ⊆ ((𝑢𝑣) ∩ 𝐴))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3219, 24, 27, 31syl12anc 1364 . . . . . . . . 9 (((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) ∧ (𝑧𝐵 ∧ (𝑐𝑧𝑧 ⊆ (𝑢𝑣)))) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3313, 32rexlimddv 3064 . . . . . . . 8 ((((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)) → ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3433ralrimiva 2995 . . . . . . 7 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
35 ineq12 3842 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝐴) ∩ (𝑣𝐴)))
36 inindir 3864 . . . . . . . . 9 ((𝑢𝑣) ∩ 𝐴) = ((𝑢𝐴) ∩ (𝑣𝐴))
3735, 36syl6eqr 2703 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑎𝑏) = ((𝑢𝑣) ∩ 𝐴))
3837sseq2d 3666 . . . . . . . . . 10 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (𝑤 ⊆ (𝑎𝑏) ↔ 𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴)))
3938anbi2d 740 . . . . . . . . 9 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ((𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ (𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4039rexbidv 3081 . . . . . . . 8 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4137, 40raleqbidv 3182 . . . . . . 7 ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → (∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)) ↔ ∀𝑐 ∈ ((𝑢𝑣) ∩ 𝐴)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ ((𝑢𝑣) ∩ 𝐴))))
4234, 41syl5ibrcom 237 . . . . . 6 (((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4342rexlimdvva 3067 . . . . 5 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (∃𝑢𝐵𝑣𝐵 (𝑎 = (𝑢𝐴) ∧ 𝑏 = (𝑣𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
445, 43sylbid 230 . . . 4 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ((𝑎 ∈ (𝐵t 𝐴) ∧ 𝑏 ∈ (𝐵t 𝐴)) → ∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4544ralrimivv 2999 . . 3 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
46 ovex 6718 . . . 4 (𝐵t 𝐴) ∈ V
47 isbasis2g 20800 . . . 4 ((𝐵t 𝐴) ∈ V → ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏))))
4846, 47ax-mp 5 . . 3 ((𝐵t 𝐴) ∈ TopBases ↔ ∀𝑎 ∈ (𝐵t 𝐴)∀𝑏 ∈ (𝐵t 𝐴)∀𝑐 ∈ (𝑎𝑏)∃𝑤 ∈ (𝐵t 𝐴)(𝑐𝑤𝑤 ⊆ (𝑎𝑏)))
4945, 48sylibr 224 . 2 ((𝐵 ∈ TopBases ∧ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ TopBases)
50 relxp 5160 . . . . . 6 Rel (V × V)
51 restfn 16132 . . . . . . . 8 t Fn (V × V)
52 fndm 6028 . . . . . . . 8 ( ↾t Fn (V × V) → dom ↾t = (V × V))
5351, 52ax-mp 5 . . . . . . 7 dom ↾t = (V × V)
5453releqi 5236 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
5550, 54mpbir 221 . . . . 5 Rel dom ↾t
5655ovprc2 6725 . . . 4 𝐴 ∈ V → (𝐵t 𝐴) = ∅)
5756adantl 481 . . 3 ((𝐵 ∈ TopBases ∧ ¬ 𝐴 ∈ V) → (𝐵t 𝐴) = ∅)
58 fi0 8367 . . . 4 (fi‘∅) = ∅
59 fibas 20829 . . . 4 (fi‘∅) ∈ TopBases
6058, 59eqeltrri 2727 . . 3 ∅ ∈ TopBases
6157, 60syl6eqel 2738 . 2 ((𝐵 ∈ TopBases ∧ ¬ 𝐴 ∈ V) → (𝐵t 𝐴) ∈ TopBases)
6249, 61pm2.61dan 849 1 (𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  c0 3948   × cxp 5141  dom cdm 5143  Rel wrel 5148   Fn wfn 5921  cfv 5926  (class class class)co 6690  ficfi 8357  t crest 16128  TopBasesctb 20797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-bases 20798
This theorem is referenced by:  resttop  21012  2ndcrest  21305
  Copyright terms: Public domain W3C validator