Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngchomrnghmresALTV Structured version   Visualization version   GIF version

Theorem rngchomrnghmresALTV 44287
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngchomrnghmresALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngchomrnghmresALTV.b 𝐵 = (Rng ∩ 𝑈)
rngchomrnghmresALTV.u (𝜑𝑈𝑉)
rngchomrnghmresALTV.f 𝐹 = (Homf𝐶)
Assertion
Ref Expression
rngchomrnghmresALTV (𝜑𝐹 = ( RngHomo ↾ (𝐵 × 𝐵)))

Proof of Theorem rngchomrnghmresALTV
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑣 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngchomrnghmresALTV.c . . . . 5 𝐶 = (RngCatALTV‘𝑈)
2 eqid 2821 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 rngchomrnghmresALTV.u . . . . 5 (𝜑𝑈𝑉)
41, 2, 3rngcbasALTV 44274 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
5 inss2 4206 . . . 4 (𝑈 ∩ Rng) ⊆ Rng
64, 5eqsstrdi 4021 . . 3 (𝜑 → (Base‘𝐶) ⊆ Rng)
7 resmpo 7272 . . 3 (((Base‘𝐶) ⊆ Rng ∧ (Base‘𝐶) ⊆ Rng) → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦)))
86, 6, 7syl2anc 586 . 2 (𝜑 → ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦)))
9 df-rnghomo 44178 . . . . . 6 RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
10 ovex 7189 . . . . . . . . 9 (𝑤m 𝑣) ∈ V
1110rabex 5235 . . . . . . . 8 {𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1211csbex 5215 . . . . . . 7 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
1312csbex 5215 . . . . . 6 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
149, 13fnmpoi 7768 . . . . 5 RngHomo Fn (Rng × Rng)
1514a1i 11 . . . 4 (𝜑 → RngHomo Fn (Rng × Rng))
16 fnov 7282 . . . 4 ( RngHomo Fn (Rng × Rng) ↔ RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)))
1715, 16sylib 220 . . 3 (𝜑 → RngHomo = (𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)))
18 incom 4178 . . . . . 6 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1918a1i 11 . . . . 5 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
20 rngchomrnghmresALTV.b . . . . . 6 𝐵 = (Rng ∩ 𝑈)
2120a1i 11 . . . . 5 (𝜑𝐵 = (Rng ∩ 𝑈))
2219, 4, 213eqtr4rd 2867 . . . 4 (𝜑𝐵 = (Base‘𝐶))
2322sqxpeqd 5587 . . 3 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐶) × (Base‘𝐶)))
2417, 23reseq12d 5854 . 2 (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = ((𝑥 ∈ Rng, 𝑦 ∈ Rng ↦ (𝑥 RngHomo 𝑦)) ↾ ((Base‘𝐶) × (Base‘𝐶))))
25 rngchomrnghmresALTV.f . . 3 𝐹 = (Homf𝐶)
261, 2, 3, 25rngchomffvalALTV 44286 . 2 (𝜑𝐹 = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥 RngHomo 𝑦)))
278, 24, 263eqtr4rd 2867 1 (𝜑𝐹 = ( RngHomo ↾ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  csb 3883  cin 3935  wss 3936   × cxp 5553  cres 5557   Fn wfn 6350  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Homf chomf 16937  Rngcrng 44165   RngHomo crngh 44176  RngCatALTVcrngcALTV 44249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-hom 16589  df-cco 16590  df-homf 16941  df-rnghomo 44178  df-rngcALTV 44251
This theorem is referenced by:  rhmsubcALTV  44399
  Copyright terms: Public domain W3C validator