Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-grothprim Structured version   Visualization version   GIF version

Theorem rr-grothprim 40710
Description: An equivalent of ax-groth 10238 using only primitives. This uses only 123 symbols, which is significantly less than the previous record of 163 established by grothprim 10249 (which uses some defined symbols, and requires 229 symbols if expanded to primitives). (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
rr-grothprim ¬ ∀𝑦(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡𝑣𝑡𝑧) → ¬ (𝑣𝑦 → ¬ 𝑣𝑤)) → ¬ ∀𝑖(𝑖𝑧 → (𝑣𝑦 → (𝑖𝑣 → (𝑣𝑓 → ¬ ∀𝑢(𝑢𝑓 → (𝑖𝑢 → ¬ ∀𝑜(𝑜𝑢 → ∀𝑠(𝑠𝑜𝑠𝑤))))))))))))
Distinct variable groups:   𝑥,𝑦   𝑢,𝑜   𝑧,𝑣,𝑡   𝑤,𝑜,𝑠   𝑦,𝑧,𝑤,𝑣,𝑢,𝑓,𝑖

Proof of Theorem rr-grothprim
StepHypRef Expression
1 gruex 40708 . . . 4 𝑦 ∈ Univ 𝑥𝑦
21ax-gen 1795 . . 3 𝑥𝑦 ∈ Univ 𝑥𝑦
3 rr-grothprimbi 40705 . . 3 (∀𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀𝑥 ¬ ∀𝑦(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡𝑣𝑡𝑧) → ¬ (𝑣𝑦 → ¬ 𝑣𝑤)) → ¬ ∀𝑖(𝑖𝑧 → (𝑣𝑦 → (𝑖𝑣 → (𝑣𝑓 → ¬ ∀𝑢(𝑢𝑓 → (𝑖𝑢 → ¬ ∀𝑜(𝑜𝑢 → ∀𝑠(𝑠𝑜𝑠𝑤)))))))))))))
42, 3mpbi 232 . 2 𝑥 ¬ ∀𝑦(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡𝑣𝑡𝑧) → ¬ (𝑣𝑦 → ¬ 𝑣𝑤)) → ¬ ∀𝑖(𝑖𝑧 → (𝑣𝑦 → (𝑖𝑣 → (𝑣𝑓 → ¬ ∀𝑢(𝑢𝑓 → (𝑖𝑢 → ¬ ∀𝑜(𝑜𝑢 → ∀𝑠(𝑠𝑜𝑠𝑤))))))))))))
54spi 2182 1 ¬ ∀𝑦(𝑥𝑦 → ¬ ∀𝑧(𝑧𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡𝑣𝑡𝑧) → ¬ (𝑣𝑦 → ¬ 𝑣𝑤)) → ¬ ∀𝑖(𝑖𝑧 → (𝑣𝑦 → (𝑖𝑣 → (𝑣𝑓 → ¬ ∀𝑢(𝑢𝑓 → (𝑖𝑢 → ¬ ∀𝑜(𝑜𝑢 → ∀𝑠(𝑠𝑜𝑠𝑤))))))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1534  wcel 2113  wrex 3138  Univcgru 10205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-reg 9049  ax-inf2 9097  ax-ac2 9878  ax-groth 10238
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-smo 7976  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-oi 8967  df-har 9015  df-tc 9172  df-r1 9186  df-rank 9187  df-card 9361  df-aleph 9362  df-cf 9363  df-acn 9364  df-ac 9535  df-wina 10099  df-ina 10100  df-tsk 10164  df-gru 10206  df-scott 40646  df-coll 40661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator