Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruex Structured version   Visualization version   GIF version

Theorem gruex 40683
Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Assertion
Ref Expression
gruex 𝑦 ∈ Univ 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem gruex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rankon 9224 . . 3 (rank‘𝑥) ∈ On
2 inaex 40682 . . 3 ((rank‘𝑥) ∈ On → ∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧)
31, 2ax-mp 5 . 2 𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧
4 simplr 767 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝑧)
5 inawina 10112 . . . . . . . . 9 (𝑧 ∈ Inacc → 𝑧 ∈ Inaccw)
6 winaon 10110 . . . . . . . . 9 (𝑧 ∈ Inaccw𝑧 ∈ On)
75, 6syl 17 . . . . . . . 8 (𝑧 ∈ Inacc → 𝑧 ∈ On)
87ad2antrr 724 . . . . . . 7 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑧 ∈ On)
9 vex 3497 . . . . . . . 8 𝑥 ∈ V
109rankr1a 9265 . . . . . . 7 (𝑧 ∈ On → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
118, 10syl 17 . . . . . 6 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → (𝑥 ∈ (𝑅1𝑧) ↔ (rank‘𝑥) ∈ 𝑧))
124, 11mpbird 259 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥 ∈ (𝑅1𝑧))
13 simpr 487 . . . . 5 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑦 = (𝑅1𝑧))
1412, 13eleqtrrd 2916 . . . 4 (((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) ∧ 𝑦 = (𝑅1𝑧)) → 𝑥𝑦)
15 simpl 485 . . . . 5 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → 𝑧 ∈ Inacc)
1615inagrud 40681 . . . 4 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → (𝑅1𝑧) ∈ Univ)
1714, 16rspcime 3627 . . 3 ((𝑧 ∈ Inacc ∧ (rank‘𝑥) ∈ 𝑧) → ∃𝑦 ∈ Univ 𝑥𝑦)
1817rexlimiva 3281 . 2 (∃𝑧 ∈ Inacc (rank‘𝑥) ∈ 𝑧 → ∃𝑦 ∈ Univ 𝑥𝑦)
193, 18ax-mp 5 1 𝑦 ∈ Univ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  Oncon0 6191  cfv 6355  𝑅1cr1 9191  rankcrnk 9192  Inaccwcwina 10104  Inacccina 10105  Univcgru 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104  ax-ac2 9885  ax-groth 10245
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-smo 7983  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-har 9022  df-r1 9193  df-rank 9194  df-card 9368  df-aleph 9369  df-cf 9370  df-acn 9371  df-ac 9542  df-wina 10106  df-ina 10107  df-tsk 10171  df-gru 10213
This theorem is referenced by:  rr-groth  40684  rr-grothprim  40685
  Copyright terms: Public domain W3C validator