Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sat1el2xp Structured version   Visualization version   GIF version

Theorem sat1el2xp 32626
Description: The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023.)
Assertion
Ref Expression
sat1el2xp (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
Distinct variable groups:   𝑤,𝑁   𝑎,𝑏,𝑤
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem sat1el2xp
Dummy variables 𝑥 𝑓 𝑖 𝑗 𝑢 𝑣 𝑟 𝑠 𝑡 𝑦 𝑒 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . 3 (𝑥 = ∅ → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘∅))
21raleqdv 3415 . 2 (𝑥 = ∅ → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘∅)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3 fveq2 6670 . . 3 (𝑥 = 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑦))
43raleqdv 3415 . 2 (𝑥 = 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
5 fveq2 6670 . . 3 (𝑥 = suc 𝑦 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘suc 𝑦))
65raleqdv 3415 . 2 (𝑥 = suc 𝑦 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
7 fveq2 6670 . . 3 (𝑥 = 𝑁 → ((∅ Sat ∅)‘𝑥) = ((∅ Sat ∅)‘𝑁))
87raleqdv 3415 . 2 (𝑥 = 𝑁 → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑥)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
9 eqeq1 2825 . . . . . . . 8 (𝑥 = (1st𝑤) → (𝑥 = (𝑖𝑔𝑗) ↔ (1st𝑤) = (𝑖𝑔𝑗)))
1092rexbidv 3300 . . . . . . 7 (𝑥 = (1st𝑤) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)))
1110anbi2d 630 . . . . . 6 (𝑥 = (1st𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)) ↔ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗))))
12 eqeq1 2825 . . . . . . 7 (𝑧 = (2nd𝑤) → (𝑧 = ∅ ↔ (2nd𝑤) = ∅))
1312anbi1d 631 . . . . . 6 (𝑧 = (2nd𝑤) → ((𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)) ↔ ((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗))))
1411, 13elopabi 7760 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} → ((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)))
15 goel 32594 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1615eqeq2d 2832 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = (𝑖𝑔𝑗) ↔ (1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
17 omex 9106 . . . . . . . . . . 11 ω ∈ V
1817, 17pm3.2i 473 . . . . . . . . . 10 (ω ∈ V ∧ ω ∈ V)
19 peano1 7601 . . . . . . . . . . . 12 ∅ ∈ ω
2019a1i 11 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
21 opelxpi 5592 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
2220, 21opelxpd 5593 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω)))
23 xpeq12 5580 . . . . . . . . . . . . 13 ((𝑎 = ω ∧ 𝑏 = ω) → (𝑎 × 𝑏) = (ω × ω))
2423xpeq2d 5585 . . . . . . . . . . . 12 ((𝑎 = ω ∧ 𝑏 = ω) → (ω × (𝑎 × 𝑏)) = (ω × (ω × ω)))
2524eleq2d 2898 . . . . . . . . . . 11 ((𝑎 = ω ∧ 𝑏 = ω) → (⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω))))
2625spc2egv 3600 . . . . . . . . . 10 ((ω ∈ V ∧ ω ∈ V) → (⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (ω × ω)) → ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
2718, 22, 26mpsyl 68 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏)))
28 eleq1 2900 . . . . . . . . . 10 ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
29282exbidv 1925 . . . . . . . . 9 ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ (ω × (𝑎 × 𝑏))))
3027, 29syl5ibrcom 249 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3116, 30sylbid 242 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((1st𝑤) = (𝑖𝑔𝑗) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
3231rexlimivv 3292 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3332adantl 484 . . . . 5 (((2nd𝑤) = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (1st𝑤) = (𝑖𝑔𝑗)) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3414, 33syl 17 . . . 4 (𝑤 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))} → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
35 satf00 32621 . . . 4 ((∅ Sat ∅)‘∅) = {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
3634, 35eleq2s 2931 . . 3 (𝑤 ∈ ((∅ Sat ∅)‘∅) → ∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
3736rgen 3148 . 2 𝑤 ∈ ((∅ Sat ∅)‘∅)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))
38 omsucelsucb 8094 . . . . . . . . . . 11 (𝑦 ∈ ω ↔ suc 𝑦 ∈ suc ω)
39 satf0sucom 32620 . . . . . . . . . . 11 (suc 𝑦 ∈ suc ω → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
4038, 39sylbi 219 . . . . . . . . . 10 (𝑦 ∈ ω → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
4140adantr 483 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc 𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦))
42 nnon 7586 . . . . . . . . . . . 12 (𝑦 ∈ ω → 𝑦 ∈ On)
43 rdgsuc 8060 . . . . . . . . . . . 12 (𝑦 ∈ On → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
4442, 43syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
4544adantr 483 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)))
46 elelsuc 6263 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ suc ω)
47 satf0sucom 32620 . . . . . . . . . . . . . 14 (𝑦 ∈ suc ω → ((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦))
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ((∅ Sat ∅)‘𝑦) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦))
4948eqcomd 2827 . . . . . . . . . . . 12 (𝑦 ∈ ω → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦) = ((∅ Sat ∅)‘𝑦))
5049fveq2d 6674 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)))
5150adantr 483 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘(rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘𝑦)) = ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)))
52 eqidd 2822 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
53 id 22 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑦) → 𝑓 = ((∅ Sat ∅)‘𝑦))
54 rexeq 3406 . . . . . . . . . . . . . . . . 17 (𝑓 = ((∅ Sat ∅)‘𝑦) → (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))))
5554orbi1d 913 . . . . . . . . . . . . . . . 16 (𝑓 = ((∅ Sat ∅)‘𝑦) → ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5655rexeqbi1dv 3404 . . . . . . . . . . . . . . 15 (𝑓 = ((∅ Sat ∅)‘𝑦) → (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
5756anbi2d 630 . . . . . . . . . . . . . 14 (𝑓 = ((∅ Sat ∅)‘𝑦) → ((𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))))
5857opabbidv 5132 . . . . . . . . . . . . 13 (𝑓 = ((∅ Sat ∅)‘𝑦) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} = {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
5953, 58uneq12d 4140 . . . . . . . . . . . 12 (𝑓 = ((∅ Sat ∅)‘𝑦) → (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6059adantl 484 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) ∧ 𝑓 = ((∅ Sat ∅)‘𝑦)) → (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
61 fvexd 6685 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘𝑦) ∈ V)
6217a1i 11 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ω ∈ V)
63 satf0suclem 32622 . . . . . . . . . . . . 13 ((((∅ Sat ∅)‘𝑦) ∈ V ∧ ((∅ Sat ∅)‘𝑦) ∈ V ∧ ω ∈ V) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
6461, 61, 62, 63syl3anc 1367 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V)
65 unexg 7472 . . . . . . . . . . . 12 ((((∅ Sat ∅)‘𝑦) ∈ V ∧ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} ∈ V) → (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6661, 64, 65syl2anc 586 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ∈ V)
6752, 60, 61, 66fvmptd 6775 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))‘((∅ Sat ∅)‘𝑦)) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6845, 51, 673eqtrd 2860 . . . . . . . . 9 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
6941, 68eqtrd 2856 . . . . . . . 8 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((∅ Sat ∅)‘suc 𝑦) = (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7069eleq2d 2898 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ 𝑡 ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
71 elun 4125 . . . . . . 7 (𝑡 ∈ (((∅ Sat ∅)‘𝑦) ∪ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
7270, 71syl6bb 289 . . . . . 6 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) ↔ (𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})))
73 fveq2 6670 . . . . . . . . . . 11 (𝑤 = 𝑡 → (1st𝑤) = (1st𝑡))
7473eleq1d 2897 . . . . . . . . . 10 (𝑤 = 𝑡 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
75742exbidv 1925 . . . . . . . . 9 (𝑤 = 𝑡 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
7675rspccv 3620 . . . . . . . 8 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
7776adantl 484 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
78 fveq2 6670 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑣 → (1st𝑤) = (1st𝑣))
7978eleq1d 2897 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑣 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑣) ∈ (ω × (𝑎 × 𝑏))))
80792exbidv 1925 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑣 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏))))
8180rspcva 3621 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏)))
82 sels 5334 . . . . . . . . . . . . . . . . . 18 ((1st𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑣) ∈ 𝑠)
8382exlimivv 1933 . . . . . . . . . . . . . . . . 17 (∃𝑎𝑏(1st𝑣) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑣) ∈ 𝑠)
8481, 83syl 17 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st𝑣) ∈ 𝑠)
8584expcom 416 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑠(1st𝑣) ∈ 𝑠))
86 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑢 → (1st𝑤) = (1st𝑢))
8786eleq1d 2897 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑢 → ((1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑢) ∈ (ω × (𝑎 × 𝑏))))
88872exbidv 1925 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑢 → (∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏))))
8988rspcva 3621 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏)))
90 sels 5334 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑢) ∈ 𝑠)
9190exlimivv 1933 . . . . . . . . . . . . . . . . . . 19 (∃𝑎𝑏(1st𝑢) ∈ (ω × (𝑎 × 𝑏)) → ∃𝑠(1st𝑢) ∈ 𝑠)
9289, 91syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑠(1st𝑢) ∈ 𝑠)
93 eleq2w 2896 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑟 → ((1st𝑢) ∈ 𝑠 ↔ (1st𝑢) ∈ 𝑟))
9493cbvexvw 2044 . . . . . . . . . . . . . . . . . . 19 (∃𝑠(1st𝑢) ∈ 𝑠 ↔ ∃𝑟(1st𝑢) ∈ 𝑟)
95 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟 ∈ V
96 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑠 ∈ V
9795, 96pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ V ∧ 𝑠 ∈ V)
98 df-ov 7159 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1st𝑢)⊼𝑔(1st𝑣)) = (⊼𝑔‘⟨(1st𝑢), (1st𝑣)⟩)
99 df-gona 32588 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑔 = (𝑒 ∈ (V × V) ↦ ⟨1o, 𝑒⟩)
100 opeq2 4804 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑒 = ⟨(1st𝑢), (1st𝑣)⟩ → ⟨1o, 𝑒⟩ = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
101 opelvvg 5595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨(1st𝑢), (1st𝑣)⟩ ∈ (V × V))
102 opex 5356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ V
103102a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ V)
10499, 100, 101, 103fvmptd3 6791 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → (⊼𝑔‘⟨(1st𝑢), (1st𝑣)⟩) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
10598, 104syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑢)⊼𝑔(1st𝑣)) = ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩)
106 1onn 8265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1o ∈ ω
107106a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → 1o ∈ ω)
108 opelxpi 5592 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨(1st𝑢), (1st𝑣)⟩ ∈ (𝑟 × 𝑠))
109107, 108opelxpd 5593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ⟨1o, ⟨(1st𝑢), (1st𝑣)⟩⟩ ∈ (ω × (𝑟 × 𝑠)))
110105, 109eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠)))
111 xpeq12 5580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 = 𝑟𝑏 = 𝑠) → (𝑎 × 𝑏) = (𝑟 × 𝑠))
112111xpeq2d 5585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 = 𝑟𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (𝑟 × 𝑠)))
113112eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 = 𝑟𝑏 = 𝑠) → (((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏)) ↔ ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠))))
114113spc2egv 3600 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ V ∧ 𝑠 ∈ V) → (((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑟 × 𝑠)) → ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
11597, 110, 114mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏)))
116 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
1171162exbidv 1925 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ ∃𝑎𝑏((1st𝑢)⊼𝑔(1st𝑣)) ∈ (ω × (𝑎 × 𝑏))))
118115, 117syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) ∈ 𝑟 ∧ (1st𝑣) ∈ 𝑠) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
119118ex 415 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑢) ∈ 𝑟 → ((1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
120119exlimdv 1934 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑢) ∈ 𝑟 → (∃𝑠(1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
121120com23 86 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑢) ∈ 𝑟 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
122121exlimiv 1931 . . . . . . . . . . . . . . . . . . 19 (∃𝑟(1st𝑢) ∈ 𝑟 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
12394, 122sylbi 219 . . . . . . . . . . . . . . . . . 18 (∃𝑠(1st𝑢) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
12492, 123syl 17 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
125124expcom 416 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
126125com24 95 . . . . . . . . . . . . . . 15 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (∃𝑠(1st𝑣) ∈ 𝑠 → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
12785, 126syld 47 . . . . . . . . . . . . . 14 (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
128127adantl 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
129128com14 96 . . . . . . . . . . . 12 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (𝑣 ∈ ((∅ Sat ∅)‘𝑦) → ((1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
130129rexlimdv 3283 . . . . . . . . . . 11 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
13117, 96pm3.2i 473 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ V ∧ 𝑠 ∈ V)
132 df-goal 32589 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑔𝑖(1st𝑢) = ⟨2o, ⟨𝑖, (1st𝑢)⟩⟩
133 2onn 8266 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2o ∈ ω
134133a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → 2o ∈ ω)
135 opelxpi 5592 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ω ∧ (1st𝑢) ∈ 𝑠) → ⟨𝑖, (1st𝑢)⟩ ∈ (ω × 𝑠))
136135ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ⟨𝑖, (1st𝑢)⟩ ∈ (ω × 𝑠))
137134, 136opelxpd 5593 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ⟨2o, ⟨𝑖, (1st𝑢)⟩⟩ ∈ (ω × (ω × 𝑠)))
138132, 137eqeltrid 2917 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω) → ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠)))
1391383adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠)))
140 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . 23 ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) ↔ ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠))))
1411403ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) ↔ ∀𝑔𝑖(1st𝑢) ∈ (ω × (ω × 𝑠))))
142139, 141mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → (1st𝑡) ∈ (ω × (ω × 𝑠)))
143 xpeq12 5580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 = ω ∧ 𝑏 = 𝑠) → (𝑎 × 𝑏) = (ω × 𝑠))
144143xpeq2d 5585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 = ω ∧ 𝑏 = 𝑠) → (ω × (𝑎 × 𝑏)) = (ω × (ω × 𝑠)))
145144eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = ω ∧ 𝑏 = 𝑠) → ((1st𝑡) ∈ (ω × (𝑎 × 𝑏)) ↔ (1st𝑡) ∈ (ω × (ω × 𝑠))))
146145spc2egv 3600 . . . . . . . . . . . . . . . . . . . . 21 ((ω ∈ V ∧ 𝑠 ∈ V) → ((1st𝑡) ∈ (ω × (ω × 𝑠)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
147131, 142, 146mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑢) ∈ 𝑠𝑖 ∈ ω ∧ (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))
1481473exp 1115 . . . . . . . . . . . . . . . . . . 19 ((1st𝑢) ∈ 𝑠 → (𝑖 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
149148com23 86 . . . . . . . . . . . . . . . . . 18 ((1st𝑢) ∈ 𝑠 → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
150149a1d 25 . . . . . . . . . . . . . . . . 17 ((1st𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
151150exlimiv 1931 . . . . . . . . . . . . . . . 16 (∃𝑠(1st𝑢) ∈ 𝑠 → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
15292, 151syl 17 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ((∅ Sat ∅)‘𝑦) ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
153152ex 415 . . . . . . . . . . . . . 14 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑦 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))))
154153impcomd 414 . . . . . . . . . . . . 13 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → (𝑖 ∈ ω → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
155154com24 95 . . . . . . . . . . . 12 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (𝑖 ∈ ω → ((1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))))
156155rexlimdv 3283 . . . . . . . . . . 11 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → (∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
157130, 156jaod 855 . . . . . . . . . 10 (𝑢 ∈ ((∅ Sat ∅)‘𝑦) → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
158157rexlimiv 3280 . . . . . . . . 9 (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
159158adantl 484 . . . . . . . 8 (((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))) → ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
160 eqeq1 2825 . . . . . . . . . . . . 13 (𝑥 = (1st𝑡) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ (1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣))))
161160rexbidv 3297 . . . . . . . . . . . 12 (𝑥 = (1st𝑡) → (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ ∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣))))
162 eqeq1 2825 . . . . . . . . . . . . 13 (𝑥 = (1st𝑡) → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ (1st𝑡) = ∀𝑔𝑖(1st𝑢)))
163162rexbidv 3297 . . . . . . . . . . . 12 (𝑥 = (1st𝑡) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ↔ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))
164161, 163orbi12d 915 . . . . . . . . . . 11 (𝑥 = (1st𝑡) → ((∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ (∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
165164rexbidv 3297 . . . . . . . . . 10 (𝑥 = (1st𝑡) → (∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ↔ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
166165anbi2d 630 . . . . . . . . 9 (𝑥 = (1st𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))) ↔ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))))
167 eqeq1 2825 . . . . . . . . . 10 (𝑧 = (2nd𝑡) → (𝑧 = ∅ ↔ (2nd𝑡) = ∅))
168167anbi1d 631 . . . . . . . . 9 (𝑧 = (2nd𝑡) → ((𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))) ↔ ((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢)))))
169166, 168elopabi 7760 . . . . . . . 8 (𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} → ((2nd𝑡) = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)(1st𝑡) = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω (1st𝑡) = ∀𝑔𝑖(1st𝑢))))
170159, 169syl11 33 . . . . . . 7 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))} → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17177, 170jaod 855 . . . . . 6 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → ((𝑡 ∈ ((∅ Sat ∅)‘𝑦) ∨ 𝑡 ∈ {⟨𝑥, 𝑧⟩ ∣ (𝑧 = ∅ ∧ ∃𝑢 ∈ ((∅ Sat ∅)‘𝑦)(∃𝑣 ∈ ((∅ Sat ∅)‘𝑦)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17272, 171sylbid 242 . . . . 5 ((𝑦 ∈ ω ∧ ∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
173172ex 415 . . . 4 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → (𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦) → ∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))))
174173ralrimdv 3188 . . 3 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏))))
17575cbvralvw 3449 . . 3 (∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) ↔ ∀𝑡 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑡) ∈ (ω × (𝑎 × 𝑏)))
176174, 175syl6ibr 254 . 2 (𝑦 ∈ ω → (∀𝑤 ∈ ((∅ Sat ∅)‘𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)) → ∀𝑤 ∈ ((∅ Sat ∅)‘suc 𝑦)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏))))
1772, 4, 6, 8, 37, 176finds 7608 1 (𝑁 ∈ ω → ∀𝑤 ∈ ((∅ Sat ∅)‘𝑁)∃𝑎𝑏(1st𝑤) ∈ (ω × (𝑎 × 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cun 3934  c0 4291  cop 4573  {copab 5128  cmpt 5146   × cxp 5553  Oncon0 6191  suc csuc 6193  cfv 6355  (class class class)co 7156  ωcom 7580  1st c1st 7687  2nd c2nd 7688  reccrdg 8045  1oc1o 8095  2oc2o 8096  𝑔cgoe 32580  𝑔cgna 32581  𝑔cgol 32582   Sat csat 32583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-map 8408  df-goel 32587  df-gona 32588  df-goal 32589  df-sat 32590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator