Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfun Structured version   Visualization version   GIF version

Theorem satfun 32658
Description: The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.)
Assertion
Ref Expression
satfun ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))

Proof of Theorem satfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satff 32657 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
213expa 1114 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
3 entric 9979 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦𝑦𝑥))
43adantl 484 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦𝑦𝑥))
5 nnsdomo 8713 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦))
65adantl 484 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦))
7 pm3.22 462 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ∈ ω ∧ 𝑥 ∈ ω))
87anim2i 618 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)))
9 pssss 4072 . . . . . . . . . . . . 13 (𝑥𝑦𝑥𝑦)
10 eqid 2821 . . . . . . . . . . . . . . 15 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1110satfsschain 32611 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) → (𝑥𝑦 → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)))
1211imp 409 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
138, 9, 12syl2an 597 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
1413orcd 869 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
1514ex 415 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
166, 15sylbid 242 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
17 nneneq 8700 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦))
1817adantl 484 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥 = 𝑦))
19 ssid 3989 . . . . . . . . . . . 12 ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑦)
20 fveq2 6670 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦))
2119, 20sseqtrrid 4020 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
2221olcd 870 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
2318, 22syl6bi 255 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
24 nnsdomo 8713 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦𝑥𝑦𝑥))
2524ancoms 461 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦𝑥𝑦𝑥))
2625adantl 484 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥𝑦𝑥))
2710satfsschain 32611 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
28 pssss 4072 . . . . . . . . . . . . 13 (𝑦𝑥𝑦𝑥)
2927, 28impel 508 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
3029olcd 870 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3130ex 415 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3226, 31sylbid 242 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3316, 23, 323jaod 1424 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑥𝑦𝑥𝑦𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
344, 33mpd 15 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3534expr 459 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (𝑦 ∈ ω → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3635ralrimiv 3181 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
372, 36jca 514 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3837ralrimiva 3182 . . 3 ((𝑀𝑉𝐸𝑊) → ∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
39 fvex 6683 . . . 4 ((𝑀 Sat 𝐸)‘𝑥) ∈ V
4020, 39fiun 7644 . . 3 (∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
4138, 40syl 17 . 2 ((𝑀𝑉𝐸𝑊) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
42 satom 32603 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω) = 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥))
43 fmla 32628 . . . 4 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
4443a1i 11 . . 3 ((𝑀𝑉𝐸𝑊) → (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥))
4542, 44feq12d 6502 . 2 ((𝑀𝑉𝐸𝑊) → (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω) ↔ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω)))
4641, 45mpbird 259 1 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3o 1082   = wceq 1537  wcel 2114  wral 3138  wss 3936  wpss 3937  𝒫 cpw 4539   ciun 4919   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  ωcom 7580  m cmap 8406  cen 8506  csdm 8508   Sat csat 32583  Fmlacfmla 32584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-card 9368  df-ac 9542  df-goel 32587  df-gona 32588  df-goal 32589  df-sat 32590  df-fmla 32592
This theorem is referenced by:  satfvel  32659  satefvfmla0  32665  satefvfmla1  32672
  Copyright terms: Public domain W3C validator