HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel3 Structured version   Visualization version   GIF version

Theorem shsel3 29092
Description: Membership in the subspace sum of two Hilbert subspaces, using vector subtraction. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
Assertion
Ref Expression
shsel3 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 shsel 29091 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
2 id 22 . . . . . . 7 (𝐶 = (𝑥 + 𝑧) → 𝐶 = (𝑥 + 𝑧))
3 shel 28988 . . . . . . . . . 10 ((𝐴S𝑥𝐴) → 𝑥 ∈ ℋ)
4 shel 28988 . . . . . . . . . 10 ((𝐵S𝑧𝐵) → 𝑧 ∈ ℋ)
5 hvaddsubval 28810 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
63, 4, 5syl2an 597 . . . . . . . . 9 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
76an4s 658 . . . . . . . 8 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑧𝐵)) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
87anassrs 470 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (𝑥 + 𝑧) = (𝑥 (-1 · 𝑧)))
92, 8sylan9eqr 2878 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → 𝐶 = (𝑥 (-1 · 𝑧)))
10 neg1cn 11752 . . . . . . . . . 10 -1 ∈ ℂ
11 shmulcl 28995 . . . . . . . . . 10 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1210, 11mp3an2 1445 . . . . . . . . 9 ((𝐵S𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1312adantll 712 . . . . . . . 8 (((𝐴S𝐵S ) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
1413adantlr 713 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) → (-1 · 𝑧) ∈ 𝐵)
15 oveq2 7164 . . . . . . . 8 (𝑦 = (-1 · 𝑧) → (𝑥 𝑦) = (𝑥 (-1 · 𝑧)))
1615rspceeqv 3638 . . . . . . 7 (((-1 · 𝑧) ∈ 𝐵𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1714, 16sylan 582 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 (-1 · 𝑧))) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
189, 17syldan 593 . . . . 5 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑧𝐵) ∧ 𝐶 = (𝑥 + 𝑧)) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦))
1918rexlimdva2 3287 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) → ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
20 id 22 . . . . . . 7 (𝐶 = (𝑥 𝑦) → 𝐶 = (𝑥 𝑦))
21 shel 28988 . . . . . . . . . 10 ((𝐵S𝑦𝐵) → 𝑦 ∈ ℋ)
22 hvsubval 28793 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
233, 21, 22syl2an 597 . . . . . . . . 9 (((𝐴S𝑥𝐴) ∧ (𝐵S𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2423an4s 658 . . . . . . . 8 (((𝐴S𝐵S ) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2524anassrs 470 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
2620, 25sylan9eqr 2878 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → 𝐶 = (𝑥 + (-1 · 𝑦)))
27 shmulcl 28995 . . . . . . . . . 10 ((𝐵S ∧ -1 ∈ ℂ ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
2810, 27mp3an2 1445 . . . . . . . . 9 ((𝐵S𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
2928adantll 712 . . . . . . . 8 (((𝐴S𝐵S ) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
3029adantlr 713 . . . . . . 7 ((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (-1 · 𝑦) ∈ 𝐵)
31 oveq2 7164 . . . . . . . 8 (𝑧 = (-1 · 𝑦) → (𝑥 + 𝑧) = (𝑥 + (-1 · 𝑦)))
3231rspceeqv 3638 . . . . . . 7 (((-1 · 𝑦) ∈ 𝐵𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3330, 32sylan 582 . . . . . 6 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 + (-1 · 𝑦))) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3426, 33syldan 593 . . . . 5 (((((𝐴S𝐵S ) ∧ 𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝐶 = (𝑥 𝑦)) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧))
3534rexlimdva2 3287 . . . 4 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑦𝐵 𝐶 = (𝑥 𝑦) → ∃𝑧𝐵 𝐶 = (𝑥 + 𝑧)))
3619, 35impbid 214 . . 3 (((𝐴S𝐵S ) ∧ 𝑥𝐴) → (∃𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑦𝐵 𝐶 = (𝑥 𝑦)))
3736rexbidva 3296 . 2 ((𝐴S𝐵S ) → (∃𝑥𝐴𝑧𝐵 𝐶 = (𝑥 + 𝑧) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
381, 37bitrd 281 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  (class class class)co 7156  cc 10535  1c1 10538  -cneg 10871  chba 28696   + cva 28697   · csm 28698   cmv 28702   S csh 28705   + cph 28708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-hilex 28776  ax-hfvadd 28777  ax-hvcom 28778  ax-hvass 28779  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783  ax-hvmulass 28784  ax-hvdistr2 28786  ax-hvmul0 28787
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-neg 10873  df-grpo 28270  df-ablo 28322  df-hvsub 28748  df-sh 28984  df-shs 29085
This theorem is referenced by:  pjimai  29953
  Copyright terms: Public domain W3C validator