MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndlsmidm Structured version   Visualization version   GIF version

Theorem smndlsmidm 18781
Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
smndlsmidm (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 𝑈) = 𝑈)

Proof of Theorem smndlsmidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6702 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ dom SubMnd)
2 eqid 2821 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
32submss 17974 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
4 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
5 lsmub1.p . . . . 5 = (LSSum‘𝐺)
62, 4, 5lsmvalx 18764 . . . 4 ((𝐺 ∈ dom SubMnd ∧ 𝑈 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑈 𝑈) = ran (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
71, 3, 3, 6syl3anc 1367 . . 3 (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 𝑈) = ran (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
84submcl 17977 . . . . . . 7 ((𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑈𝑦𝑈) → (𝑥(+g𝐺)𝑦) ∈ 𝑈)
983expb 1116 . . . . . 6 ((𝑈 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(+g𝐺)𝑦) ∈ 𝑈)
109ralrimivva 3191 . . . . 5 (𝑈 ∈ (SubMnd‘𝐺) → ∀𝑥𝑈𝑦𝑈 (𝑥(+g𝐺)𝑦) ∈ 𝑈)
11 eqid 2821 . . . . . 6 (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦))
1211fmpo 7766 . . . . 5 (∀𝑥𝑈𝑦𝑈 (𝑥(+g𝐺)𝑦) ∈ 𝑈 ↔ (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)):(𝑈 × 𝑈)⟶𝑈)
1310, 12sylib 220 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)):(𝑈 × 𝑈)⟶𝑈)
1413frnd 6521 . . 3 (𝑈 ∈ (SubMnd‘𝐺) → ran (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) ⊆ 𝑈)
157, 14eqsstrd 4005 . 2 (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 𝑈) ⊆ 𝑈)
162, 5lsmub1x 18771 . . 3 ((𝑈 ⊆ (Base‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑈 ⊆ (𝑈 𝑈))
173, 16mpancom 686 . 2 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (𝑈 𝑈))
1815, 17eqssd 3984 1 (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 𝑈) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3138  wss 3936   × cxp 5553  dom cdm 5555  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  +gcplusg 16565  SubMndcsubmnd 17955  LSSumclsm 18759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-lsm 18761
This theorem is referenced by:  lsmidm  18788  mndlsmidm  18796
  Copyright terms: Public domain W3C validator