MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup2 Structured version   Visualization version   GIF version

Theorem sup2 11017
Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
sup2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem sup2
StepHypRef Expression
1 peano2re 10247 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
21adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ))
4 ssel 3630 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
5 ltp1 10899 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
61ancli 573 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
7 lttr 10152 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
873expb 1285 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
96, 8sylan2 490 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
105, 9sylan2i 688 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1)))
1110exp4b 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1)))))
1211com34 91 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))))
1312pm2.43d 53 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1))))
1413imp 444 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))
15 breq1 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
165, 15syl5ibrcom 237 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1716adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1814, 17jaod 394 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))
1918ex 449 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
204, 19syl6 35 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → (𝑦𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2120com23 86 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2221imp 444 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
2322a2d 29 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝐴 → (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑦𝐴𝑦 < (𝑥 + 1))))
2423ralimdv2 2990 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
2524expimpd 628 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
263, 25jcad 554 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
27 ovex 6718 . . . . . . . . . 10 (𝑥 + 1) ∈ V
28 eleq1 2718 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ))
29 breq2 4689 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧𝑦 < (𝑥 + 1)))
3029ralbidv 3015 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
3128, 30anbi12d 747 . . . . . . . . . 10 (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
3227, 31spcev 3331 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧))
3326, 32syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
3433exlimdv 1901 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
35 eleq1 2718 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ))
36 breq2 4689 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
3736ralbidv 3015 . . . . . . . . 9 (𝑧 = 𝑥 → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < 𝑥))
3835, 37anbi12d 747 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
3938cbvexv 2311 . . . . . . 7 (∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4034, 39syl6ib 241 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
41 df-rex 2947 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
42 df-rex 2947 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4340, 41, 423imtr4g 285 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4443adantr 480 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4544imdistani 726 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
46 df-3an 1056 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
47 df-3an 1056 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4845, 46, 473imtr4i 281 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
49 axsup 10151 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5048, 49syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977   < clt 10112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307
This theorem is referenced by:  sup3  11018  nnunb  11326
  Copyright terms: Public domain W3C validator