Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcntz Structured version   Visualization version   GIF version

Theorem symgcntz 30750
Description: All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
symgcntz.s 𝑆 = (SymGrp‘𝐷)
symgcntz.b 𝐵 = (Base‘𝑆)
symgcntz.z 𝑍 = (Cntz‘𝑆)
symgcntz.a (𝜑𝐴𝐵)
symgcntz.1 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
Assertion
Ref Expression
symgcntz (𝜑𝐴 ⊆ (𝑍𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem symgcntz
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → 𝑐 = 𝑑)
21oveq1d 7164 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑑))
31oveq2d 7165 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑(+g𝑆)𝑑))
42, 3eqtr4d 2858 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐 = 𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
5 symgcntz.s . . . . . 6 𝑆 = (SymGrp‘𝐷)
6 symgcntz.b . . . . . 6 𝐵 = (Base‘𝑆)
7 symgcntz.a . . . . . . . 8 (𝜑𝐴𝐵)
87ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝐴𝐵)
9 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐴)
108, 9sseldd 3961 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝐵)
11 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐴)
128, 11sseldd 3961 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑑𝐵)
13 symgcntz.1 . . . . . . . 8 (𝜑Disj 𝑥𝐴 dom (𝑥 ∖ I ))
1413ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → Disj 𝑥𝐴 dom (𝑥 ∖ I ))
15 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → 𝑐𝑑)
16 difeq1 4085 . . . . . . . . 9 (𝑥 = 𝑐 → (𝑥 ∖ I ) = (𝑐 ∖ I ))
1716dmeqd 5767 . . . . . . . 8 (𝑥 = 𝑐 → dom (𝑥 ∖ I ) = dom (𝑐 ∖ I ))
18 difeq1 4085 . . . . . . . . 9 (𝑥 = 𝑑 → (𝑥 ∖ I ) = (𝑑 ∖ I ))
1918dmeqd 5767 . . . . . . . 8 (𝑥 = 𝑑 → dom (𝑥 ∖ I ) = dom (𝑑 ∖ I ))
2017, 19disji2 5041 . . . . . . 7 ((Disj 𝑥𝐴 dom (𝑥 ∖ I ) ∧ (𝑐𝐴𝑑𝐴) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
2114, 9, 11, 15, 20syl121anc 1370 . . . . . 6 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (dom (𝑐 ∖ I ) ∩ dom (𝑑 ∖ I )) = ∅)
225, 6, 10, 12, 21symgcom2 30749 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐𝑑) = (𝑑𝑐))
23 eqid 2820 . . . . . . 7 (+g𝑆) = (+g𝑆)
245, 6, 23symgov 18507 . . . . . 6 ((𝑐𝐵𝑑𝐵) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
2510, 12, 24syl2anc 586 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑐𝑑))
265, 6, 23symgov 18507 . . . . . 6 ((𝑑𝐵𝑐𝐵) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2712, 10, 26syl2anc 586 . . . . 5 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑑(+g𝑆)𝑐) = (𝑑𝑐))
2822, 25, 273eqtr4d 2865 . . . 4 (((𝜑 ∧ (𝑐𝐴𝑑𝐴)) ∧ 𝑐𝑑) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
294, 28pm2.61dane 3103 . . 3 ((𝜑 ∧ (𝑐𝐴𝑑𝐴)) → (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
3029ralrimivva 3190 . 2 (𝜑 → ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐))
31 symgcntz.z . . . 4 𝑍 = (Cntz‘𝑆)
326, 23, 31sscntz 18451 . . 3 ((𝐴𝐵𝐴𝐵) → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
337, 7, 32syl2anc 586 . 2 (𝜑 → (𝐴 ⊆ (𝑍𝐴) ↔ ∀𝑐𝐴𝑑𝐴 (𝑐(+g𝑆)𝑑) = (𝑑(+g𝑆)𝑐)))
3430, 33mpbird 259 1 (𝜑𝐴 ⊆ (𝑍𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3015  wral 3137  cdif 3926  cin 3928  wss 3929  c0 4284  Disj wdisj 5024   I cid 5452  dom cdm 5548  ccom 5552  cfv 6348  (class class class)co 7149  Basecbs 16478  +gcplusg 16560  Cntzccntz 18440  SymGrpcsymg 18490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-tset 16579  df-efmnd 18029  df-cntz 18442  df-symg 18491
This theorem is referenced by:  tocyccntz  30807
  Copyright terms: Public domain W3C validator