Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconncompss Structured version   Visualization version   GIF version

Theorem tgpconncompss 21857
 Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconncomp.x 𝑋 = (Base‘𝐺)
tgpconncomp.z 0 = (0g𝐺)
tgpconncomp.j 𝐽 = (TopOpen‘𝐺)
tgpconncomp.s 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
tgpconncompss ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 𝑆𝑇)
Distinct variable groups:   𝑥, 0   𝑥,𝐽   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem tgpconncompss
StepHypRef Expression
1 tgpconncomp.j . . . 4 𝐽 = (TopOpen‘𝐺)
2 tgpconncomp.x . . . 4 𝑋 = (Base‘𝐺)
31, 2tgptopon 21826 . . 3 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
433ad2ant1 1080 . 2 ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 𝐽 ∈ (TopOn‘𝑋))
5 simp3 1061 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 𝑇𝐽)
61opnsubg 21851 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 𝑇 ∈ (Clsd‘𝐽))
75, 6elind 3782 . 2 ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)))
8 tgpconncomp.z . . . 4 0 = (0g𝐺)
98subg0cl 17542 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 0𝑇)
1093ad2ant2 1081 . 2 ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 0𝑇)
11 tgpconncomp.s . . 3 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
1211conncompclo 21178 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 0𝑇) → 𝑆𝑇)
134, 7, 10, 12syl3anc 1323 1 ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇𝐽) → 𝑆𝑇)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {crab 2912   ∩ cin 3559   ⊆ wss 3560  𝒫 cpw 4136  ∪ cuni 4409  ‘cfv 5857  (class class class)co 6615  Basecbs 15800   ↾t crest 16021  TopOpenctopn 16022  0gc0g 16040  SubGrpcsubg 17528  TopOnctopon 20655  Clsdccld 20760  Conncconn 21154  TopGrpctgp 21815 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-rest 16023  df-0g 16042  df-topgen 16044  df-plusf 17181  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-cn 20971  df-cnp 20972  df-conn 21155  df-tx 21305  df-hmeo 21498  df-tmd 21816  df-tgp 21817 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator