MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrislfupgrlem Structured version   Visualization version   GIF version

Theorem umgrislfupgrlem 26907
Description: Lemma for umgrislfupgr 26908 and usgrislfuspgr 26969. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrlem ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}

Proof of Theorem umgrislfupgrlem
StepHypRef Expression
1 2pos 11741 . . . 4 0 < 2
2 simprl 769 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ 𝒫 𝑉)
3 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4 hash0 13729 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
53, 4syl6eq 2872 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (♯‘𝑥) = 0)
65breq2d 5078 . . . . . . . . . . . . 13 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
7 2re 11712 . . . . . . . . . . . . . . 15 2 ∈ ℝ
8 0re 10643 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97, 8lenlti 10760 . . . . . . . . . . . . . 14 (2 ≤ 0 ↔ ¬ 0 < 2)
10 pm2.21 123 . . . . . . . . . . . . . 14 (¬ 0 < 2 → (0 < 2 → 𝑥 ≠ ∅))
119, 10sylbi 219 . . . . . . . . . . . . 13 (2 ≤ 0 → (0 < 2 → 𝑥 ≠ ∅))
126, 11syl6bi 255 . . . . . . . . . . . 12 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) → (0 < 2 → 𝑥 ≠ ∅)))
1312adantld 493 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (0 < 2 → 𝑥 ≠ ∅)))
1413impcomd 414 . . . . . . . . . 10 (𝑥 = ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
15 ax-1 6 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
1614, 15pm2.61ine 3100 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅)
17 eldifsn 4719 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑉𝑥 ≠ ∅))
182, 16, 17sylanbrc 585 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ (𝒫 𝑉 ∖ {∅}))
19 simprr 771 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 2 ≤ (♯‘𝑥))
2018, 19jca 514 . . . . . . 7 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)))
2120ex 415 . . . . . 6 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
22 eldifi 4103 . . . . . . 7 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑥 ∈ 𝒫 𝑉)
2322anim1i 616 . . . . . 6 ((𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)))
2421, 23impbid1 227 . . . . 5 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) ↔ (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
2524rabbidva2 3476 . . . 4 (0 < 2 → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
261, 25ax-mp 5 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}
2726ineq2i 4186 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
28 inrab 4275 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))}
29 hashxnn0 13700 . . . . . . 7 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
3029elv 3499 . . . . . 6 (♯‘𝑥) ∈ ℕ0*
31 xnn0xr 11973 . . . . . 6 ((♯‘𝑥) ∈ ℕ0* → (♯‘𝑥) ∈ ℝ*)
3230, 31ax-mp 5 . . . . 5 (♯‘𝑥) ∈ ℝ*
337rexri 10699 . . . . 5 2 ∈ ℝ*
34 xrletri3 12548 . . . . 5 (((♯‘𝑥) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))))
3532, 33, 34mp2an 690 . . . 4 ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)))
3635bicomi 226 . . 3 (((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)) ↔ (♯‘𝑥) = 2)
3736rabbii 3473 . 2 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
3827, 28, 373eqtri 2848 1 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  cdif 3933  cin 3935  c0 4291  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  cfv 6355  0cc0 10537  *cxr 10674   < clt 10675  cle 10676  2c2 11693  0*cxnn0 11968  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by:  umgrislfupgr  26908  usgrislfuspgr  26969
  Copyright terms: Public domain W3C validator