MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2pthnlp Structured version   Visualization version   GIF version

Theorem upgr2pthnlp 27513
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2pthnlp ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem upgr2pthnlp
StepHypRef Expression
1 2pthnloop.i . . . 4 𝐼 = (iEdg‘𝐺)
212pthnloop 27512 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
323adant1 1126 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
4 pthiswlk 27508 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
51wlkf 27396 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
6 simp2 1133 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 wrdsymbcl 13876 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom 𝐼)
81upgrle2 26890 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ (𝐹𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
96, 7, 83imp3i2an 1341 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
10 fvex 6683 . . . . . . . . . . . . 13 (𝐼‘(𝐹𝑖)) ∈ V
11 hashxnn0 13700 . . . . . . . . . . . . 13 ((𝐼‘(𝐹𝑖)) ∈ V → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0*)
12 xnn0xr 11973 . . . . . . . . . . . . 13 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*)
1310, 11, 12mp2b 10 . . . . . . . . . . . 12 (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*
14 2re 11712 . . . . . . . . . . . . 13 2 ∈ ℝ
1514rexri 10699 . . . . . . . . . . . 12 2 ∈ ℝ*
1613, 15pm3.2i 473 . . . . . . . . . . 11 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*)
17 xrletri3 12548 . . . . . . . . . . 11 (((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1816, 17mp1i 13 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1918biimprd 250 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
209, 19mpand 693 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
21203exp 1115 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
224, 5, 213syl 18 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
2322impcom 410 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
24233adant3 1128 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
2524imp 409 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
2625ralimdva 3177 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2))
273, 26mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494   class class class wbr 5066  dom cdm 5555  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  *cxr 10674   < clt 10675  cle 10676  2c2 11693  0*cxnn0 11968  ..^cfzo 13034  chash 13691  Word cword 13862  iEdgciedg 26782  UPGraphcupgr 26865  Walkscwlks 27378  Pathscpths 27493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-uhgr 26843  df-upgr 26867  df-wlks 27381  df-trls 27474  df-pths 27497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator