MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wspthons3 Structured version   Visualization version   GIF version

Theorem usgr2wspthons3 27107
Description: A simple path of length 2 between two vertices represented as length 3 string corresponds to two adjacent edges in a simple graph. (Contributed by Alexander van der Vekens, 8-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
usgr2wspthon0.v 𝑉 = (Vtx‘𝐺)
usgr2wspthon0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr2wspthons3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem usgr2wspthons3
StepHypRef Expression
1 2nn 11397 . . . . . . 7 2 ∈ ℕ
2 ne0i 4064 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅)
3 wspthsnonn0vne 27058 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐴(2 WSPathsNOn 𝐺)𝐶) ≠ ∅) → 𝐴𝐶)
41, 2, 3sylancr 698 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → 𝐴𝐶)
5 simplr 809 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝐴𝐶)
6 wpthswwlks2on 27103 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (𝐴(2 WSPathsNOn 𝐺)𝐶) = (𝐴(2 WWalksNOn 𝐺)𝐶))
76eleq2d 2825 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
87biimpa 502 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
95, 8jca 555 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝐴𝐶) ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
109exp31 631 . . . . . . 7 (𝐺 ∈ USGraph → (𝐴𝐶 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))))
1110com13 88 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 → (𝐺 ∈ USGraph → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))))
124, 11mpd 15 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐺 ∈ USGraph → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1312com12 32 . . . 4 (𝐺 ∈ USGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
147biimprd 238 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
1514expimpd 630 . . . 4 (𝐺 ∈ USGraph → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
1613, 15impbid 202 . . 3 (𝐺 ∈ USGraph → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1716adantr 472 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
18 usgrumgr 26294 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 usgr2wspthon0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
20 usgr2wspthon0.e . . . . . 6 𝐸 = (Edg‘𝐺)
2119, 20umgrwwlks2on 27099 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2218, 21sylan 489 . . . 4 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2322anbi2d 742 . . 3 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))))
24 3anass 1081 . . 3 ((𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐴𝐶 ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2523, 24syl6bbr 278 . 2 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐶 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
2617, 25bitrd 268 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝐴𝐶 ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  c0 4058  {cpr 4323  cfv 6049  (class class class)co 6814  cn 11232  2c2 11282  ⟨“cs3 13807  Vtxcvtx 26094  Edgcedg 26159  UMGraphcumgr 26196  USGraphcusgr 26264   WWalksNOn cwwlksnon 26951   WSPathsNOn cwwspthsnon 26953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-ac2 9497  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-ac 9149  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507  df-s1 13508  df-s2 13813  df-s3 13814  df-edg 26160  df-uhgr 26173  df-upgr 26197  df-umgr 26198  df-uspgr 26265  df-usgr 26266  df-wlks 26726  df-wlkson 26727  df-trls 26820  df-trlson 26821  df-pths 26843  df-spths 26844  df-pthson 26845  df-spthson 26846  df-wwlks 26954  df-wwlksn 26955  df-wwlksnon 26956  df-wspthsnon 26958
This theorem is referenced by:  usgr2wspthon  27108
  Copyright terms: Public domain W3C validator