MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc Structured version   Visualization version   GIF version

Theorem vdwmc 15676
Description: The predicate " The 𝑅, 𝑁-coloring 𝐹 contains a monochromatic AP of length 𝐾". (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
Assertion
Ref Expression
vdwmc (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐹   𝐾,𝑎,𝑐,𝑑   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑑)   𝑅(𝑎,𝑐,𝑑)   𝑋(𝑎,𝑐,𝑑)

Proof of Theorem vdwmc
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
2 vdwmc.3 . . . 4 (𝜑𝐹:𝑋𝑅)
3 vdwmc.1 . . . 4 𝑋 ∈ V
4 fex 6487 . . . 4 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
52, 3, 4sylancl 694 . . 3 (𝜑𝐹 ∈ V)
6 fveq2 6189 . . . . . . . 8 (𝑘 = 𝐾 → (AP‘𝑘) = (AP‘𝐾))
76rneqd 5351 . . . . . . 7 (𝑘 = 𝐾 → ran (AP‘𝑘) = ran (AP‘𝐾))
8 cnveq 5294 . . . . . . . . 9 (𝑓 = 𝐹𝑓 = 𝐹)
98imaeq1d 5463 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ {𝑐}) = (𝐹 “ {𝑐}))
109pweqd 4161 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 (𝑓 “ {𝑐}) = 𝒫 (𝐹 “ {𝑐}))
117, 10ineqan12d 3814 . . . . . 6 ((𝑘 = 𝐾𝑓 = 𝐹) → (ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) = (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
1211neeq1d 2852 . . . . 5 ((𝑘 = 𝐾𝑓 = 𝐹) → ((ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
1312exbidv 1849 . . . 4 ((𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
14 df-vdwmc 15667 . . . 4 MonoAP = {⟨𝑘, 𝑓⟩ ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅}
1513, 14brabga 4987 . . 3 ((𝐾 ∈ ℕ0𝐹 ∈ V) → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
161, 5, 15syl2anc 693 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
17 vdwapf 15670 . . . . 5 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
18 ffn 6043 . . . . 5 ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ → (AP‘𝐾) Fn (ℕ × ℕ))
19 selpw 4163 . . . . . . 7 (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ 𝑧 ⊆ (𝐹 “ {𝑐}))
20 sseq1 3624 . . . . . . 7 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ⊆ (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2119, 20syl5bb 272 . . . . . 6 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2221rexrn 6359 . . . . 5 ((AP‘𝐾) Fn (ℕ × ℕ) → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
231, 17, 18, 224syl 19 . . . 4 (𝜑 → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
24 elin 3794 . . . . . 6 (𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ (𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2524exbii 1773 . . . . 5 (∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
26 n0 3929 . . . . 5 ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
27 df-rex 2917 . . . . 5 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2825, 26, 273bitr4ri 293 . . . 4 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅)
29 fveq2 6189 . . . . . . 7 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩))
30 df-ov 6650 . . . . . . 7 (𝑎(AP‘𝐾)𝑑) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩)
3129, 30syl6eqr 2673 . . . . . 6 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = (𝑎(AP‘𝐾)𝑑))
3231sseq1d 3630 . . . . 5 (𝑤 = ⟨𝑎, 𝑑⟩ → (((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3332rexxp 5262 . . . 4 (∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
3423, 28, 333bitr3g 302 . . 3 (𝜑 → ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3534exbidv 1849 . 2 (𝜑 → (∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3616, 35bitrd 268 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wex 1703  wcel 1989  wne 2793  wrex 2912  Vcvv 3198  cin 3571  wss 3572  c0 3913  𝒫 cpw 4156  {csn 4175  cop 4181   class class class wbr 4651   × cxp 5110  ccnv 5111  ran crn 5113  cima 5115   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  cn 11017  0cn0 11289  APcvdwa 15663   MonoAP cvdwm 15664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-vdwap 15666  df-vdwmc 15667
This theorem is referenced by:  vdwmc2  15677  vdwlem1  15679  vdwlem2  15680  vdwlem9  15687  vdwlem10  15688  vdwlem12  15690  vdwlem13  15691
  Copyright terms: Public domain W3C validator