MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsuplem Structured version   Visualization version   GIF version

Theorem volsuplem 24156
Description: Lemma for volsup 24157. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
volsuplem ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)

Proof of Theorem volsuplem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
21sseq2d 3999 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 343 . . . 4 (𝑥 = 𝐴 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6670 . . . . . 6 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
54sseq2d 3999 . . . . 5 (𝑥 = 𝑘 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝑘)))
65imbi2d 343 . . . 4 (𝑥 = 𝑘 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘))))
7 fveq2 6670 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
87sseq2d 3999 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
98imbi2d 343 . . . 4 (𝑥 = (𝑘 + 1) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
10 fveq2 6670 . . . . . 6 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1110sseq2d 3999 . . . . 5 (𝑥 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑥) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 343 . . . 4 (𝑥 = 𝐵 → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑥)) ↔ ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3989 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn 12319 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
16 fveq2 6670 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
17 fvoveq1 7179 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1816, 17sseq12d 4000 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
1918rspccva 3622 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2015, 19sylan2 594 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
2120anassrs 470 . . . . . . 7 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
22 sstr2 3974 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑘) → ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2321, 22syl5com 31 . . . . . 6 (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1))))
2423expcom 416 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → ((𝐹𝐴) ⊆ (𝐹𝑘) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
2524a2d 29 . . . 4 (𝑘 ∈ (ℤ𝐴) → (((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝑘)) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹‘(𝑘 + 1)))))
263, 6, 9, 12, 14, 25uzind4 12307 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726com12 32 . 2 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ 𝐴 ∈ ℕ) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
2827impr 457 1 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴))) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3936  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540  cn 11638  cz 11982  cuz 12244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245
This theorem is referenced by:  volsup  24157
  Copyright terms: Public domain W3C validator