MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliun Structured version   Visualization version   GIF version

Theorem voliun 23262
Description: The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
voliun.1 𝑆 = seq1( + , 𝐺)
voliun.2 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
Assertion
Ref Expression
voliun ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))

Proof of Theorem voliun
Dummy variables 𝑖 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
21ralimi 2948 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
32adantr 481 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ 𝐴 ∈ dom vol)
4 eqid 2621 . . . . 5 (𝑛 ∈ ℕ ↦ 𝐴) = (𝑛 ∈ ℕ ↦ 𝐴)
54fmpt 6347 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
63, 5sylib 208 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ 𝐴):ℕ⟶dom vol)
74fvmpt2 6258 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
87adantrr 752 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
98ralimiaa 2947 . . . . . 6 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴)
10 disjeq2 4597 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = 𝐴 → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
119, 10syl 17 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑛 ∈ ℕ 𝐴))
1211biimpar 502 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
13 nfcv 2761 . . . . 5 𝑖((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)
14 nffvmpt1 6166 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)
15 fveq2 6158 . . . . 5 (𝑛 = 𝑖 → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1613, 14, 15cbvdisj 4603 . . . 4 (Disj 𝑛 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) ↔ Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
1712, 16sylib 208 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → Disj 𝑖 ∈ ℕ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
18 eqid 2621 . . 3 (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))) = (𝑚 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))))
19 eqid 2621 . . 3 seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
20 nfcv 2761 . . . 4 𝑚(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))
21 nfcv 2761 . . . . 5 𝑛vol
22 nffvmpt1 6166 . . . . 5 𝑛((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)
2321, 22nffv 6165 . . . 4 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))
24 fveq2 6158 . . . . 5 (𝑛 = 𝑚 → ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚))
2524fveq2d 6162 . . . 4 (𝑛 = 𝑚 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
2620, 23, 25cbvmpt 4719 . . 3 (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑚 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑚)))
277fveq2d 6162 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
2827eleq1d 2683 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘𝐴) ∈ ℝ))
2928biimprd 238 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol) → ((vol‘𝐴) ∈ ℝ → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ))
3029impr 648 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3130ralimiaa 2947 . . . . 5 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
3231adantr 481 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ)
33 nfv 1840 . . . . 5 𝑖(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ
3421, 14nffv 6165 . . . . . 6 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖))
3534nfel1 2775 . . . . 5 𝑛(vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ
3615fveq2d 6162 . . . . . 6 (𝑛 = 𝑖 → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)))
3736eleq1d 2683 . . . . 5 (𝑛 = 𝑖 → ((vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ))
3833, 35, 37cbvral 3159 . . . 4 (∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) ∈ ℝ ↔ ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
3932, 38sylib 208 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑖 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑖)) ∈ ℝ)
406, 17, 18, 19, 26, 39voliunlem3 23260 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
41 dfiun2g 4525 . . . . 5 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
423, 41syl 17 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴})
434rnmpt 5341 . . . . 5 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4443unieqi 4418 . . . 4 ran (𝑛 ∈ ℕ ↦ 𝐴) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = 𝐴}
4542, 44syl6eqr 2673 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑛 ∈ ℕ 𝐴 = ran (𝑛 ∈ ℕ ↦ 𝐴))
4645fveq2d 6162 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = (vol‘ ran (𝑛 ∈ ℕ ↦ 𝐴)))
47 voliun.1 . . . . 5 𝑆 = seq1( + , 𝐺)
48 eqid 2621 . . . . . . . 8 ℕ = ℕ
4927adantrr 752 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ)) → (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5049ralimiaa 2947 . . . . . . . . 9 (∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
5150adantr 481 . . . . . . . 8 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴))
52 mpteq12 4706 . . . . . . . 8 ((ℕ = ℕ ∧ ∀𝑛 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)) = (vol‘𝐴)) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
5348, 51, 52sylancr 694 . . . . . . 7 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))) = (𝑛 ∈ ℕ ↦ (vol‘𝐴)))
54 voliun.2 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴))
5553, 54syl6reqr 2674 . . . . . 6 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛))))
5655seqeq3d 12765 . . . . 5 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → seq1( + , 𝐺) = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5747, 56syl5eq 2667 . . . 4 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → 𝑆 = seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5857rneqd 5323 . . 3 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → ran 𝑆 = ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))))
5958supeq1d 8312 . 2 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , (𝑛 ∈ ℕ ↦ (vol‘((𝑛 ∈ ℕ ↦ 𝐴)‘𝑛)))), ℝ*, < ))
6040, 46, 593eqtr4d 2665 1 ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2908  wrex 2909  cin 3559   cuni 4409   ciun 4492  Disj wdisj 4593  cmpt 4683  dom cdm 5084  ran crn 5085  wf 5853  cfv 5857  supcsup 8306  cr 9895  1c1 9897   + caddc 9899  *cxr 10033   < clt 10034  cn 10980  seqcseq 12757  vol*covol 23171  volcvol 23172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cc 9217  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-disj 4594  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xadd 11907  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-rlim 14170  df-sum 14367  df-xmet 19679  df-met 19680  df-ovol 23173  df-vol 23174
This theorem is referenced by:  volsup  23264  vitalilem4  23320  voliune  30115  voliunsge0lem  40026
  Copyright terms: Public domain W3C validator