MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup Structured version   Visualization version   GIF version

Theorem volsup 24157
Description: The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
volsup ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Distinct variable group:   𝑛,𝐹

Proof of Theorem volsup
Dummy variables 𝑗 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6849 . . . . . . . . . . 11 ((𝐹:ℕ⟶dom vol ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ dom vol)
21ad2ant2r 745 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
3 fzofi 13343 . . . . . . . . . . 11 (1..^𝑘) ∈ Fin
4 simpll 765 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
5 elfzouz 13043 . . . . . . . . . . . . . 14 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ (ℤ‘1))
6 nnuz 12282 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
75, 6eleqtrrdi 2924 . . . . . . . . . . . . 13 (𝑚 ∈ (1..^𝑘) → 𝑚 ∈ ℕ)
8 ffvelrn 6849 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑚 ∈ ℕ) → (𝐹𝑚) ∈ dom vol)
94, 7, 8syl2an 597 . . . . . . . . . . . 12 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) ∧ 𝑚 ∈ (1..^𝑘)) → (𝐹𝑚) ∈ dom vol)
109ralrimiva 3182 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
11 finiunmbl 24145 . . . . . . . . . . 11 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
123, 10, 11sylancr 589 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol)
13 difmbl 24144 . . . . . . . . . 10 (((𝐹𝑘) ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)(𝐹𝑚) ∈ dom vol) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
142, 12, 13syl2anc 586 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol)
15 mblvol 24131 . . . . . . . . . . 11 (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
1614, 15syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
17 difssd 4109 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘))
18 mblss 24132 . . . . . . . . . . . 12 ((𝐹𝑘) ∈ dom vol → (𝐹𝑘) ⊆ ℝ)
192, 18syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
20 mblvol 24131 . . . . . . . . . . . . 13 ((𝐹𝑘) ∈ dom vol → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
212, 20syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
22 simprr 771 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ ℝ)
2321, 22eqeltrrd 2914 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ)
24 ovolsscl 24087 . . . . . . . . . . 11 ((((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ⊆ (𝐹𝑘) ∧ (𝐹𝑘) ⊆ ℝ ∧ (vol*‘(𝐹𝑘)) ∈ ℝ) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2517, 19, 23, 24syl3anc 1367 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2616, 25eqeltrd 2913 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)
2714, 26jca 514 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ (vol‘(𝐹𝑘)) ∈ ℝ)) → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
2827expr 459 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ 𝑘 ∈ ℕ) → ((vol‘(𝐹𝑘)) ∈ ℝ → (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
2928ralimdva 3177 . . . . . 6 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ)))
3029imp 409 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ))
31 fveq2 6670 . . . . . 6 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231iundisj2 24150 . . . . 5 Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
33 eqid 2821 . . . . . 6 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))
34 eqid 2821 . . . . . 6 (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))) = (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))
3533, 34voliun 24155 . . . . 5 ((∀𝑘 ∈ ℕ (((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) ∈ dom vol ∧ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) ∈ ℝ) ∧ Disj 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3630, 32, 35sylancl 588 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ))
3731iundisj 24149 . . . . . 6 𝑘 ∈ ℕ (𝐹𝑘) = 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))
38 ffn 6514 . . . . . . . 8 (𝐹:ℕ⟶dom vol → 𝐹 Fn ℕ)
3938ad2antrr 724 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹 Fn ℕ)
40 fniunfv 7006 . . . . . . 7 (𝐹 Fn ℕ → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4139, 40syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ (𝐹𝑘) = ran 𝐹)
4237, 41syl5eqr 2870 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ran 𝐹)
4342fveq2d 6674 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ 𝑘 ∈ ℕ ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘ ran 𝐹))
44 1z 12013 . . . . . . . . . . 11 1 ∈ ℤ
45 seqfn 13382 . . . . . . . . . . 11 (1 ∈ ℤ → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4644, 45ax-mp 5 . . . . . . . . . 10 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1)
476fneq2i 6451 . . . . . . . . . 10 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ ↔ seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn (ℤ‘1))
4846, 47mpbir 233 . . . . . . . . 9 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ
4948a1i 11 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) Fn ℕ)
50 volf 24130 . . . . . . . . . 10 vol:dom vol⟶(0[,]+∞)
51 simpll 765 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → 𝐹:ℕ⟶dom vol)
52 fco 6531 . . . . . . . . . 10 ((vol:dom vol⟶(0[,]+∞) ∧ 𝐹:ℕ⟶dom vol) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5350, 51, 52sylancr 589 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹):ℕ⟶(0[,]+∞))
5453ffnd 6515 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol ∘ 𝐹) Fn ℕ)
55 fveq2 6670 . . . . . . . . . . . . 13 (𝑥 = 1 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1))
56 2fveq3 6675 . . . . . . . . . . . . 13 (𝑥 = 1 → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘1)))
5755, 56eqeq12d 2837 . . . . . . . . . . . 12 (𝑥 = 1 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))))
5857imbi2d 343 . . . . . . . . . . 11 (𝑥 = 1 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))))
59 fveq2 6670 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗))
60 2fveq3 6675 . . . . . . . . . . . . 13 (𝑥 = 𝑗 → (vol‘(𝐹𝑥)) = (vol‘(𝐹𝑗)))
6159, 60eqeq12d 2837 . . . . . . . . . . . 12 (𝑥 = 𝑗 → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
6261imbi2d 343 . . . . . . . . . . 11 (𝑥 = 𝑗 → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))))
63 fveq2 6670 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)))
64 2fveq3 6675 . . . . . . . . . . . . 13 (𝑥 = (𝑗 + 1) → (vol‘(𝐹𝑥)) = (vol‘(𝐹‘(𝑗 + 1))))
6563, 64eqeq12d 2837 . . . . . . . . . . . 12 (𝑥 = (𝑗 + 1) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥)) ↔ (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
6665imbi2d 343 . . . . . . . . . . 11 (𝑥 = (𝑗 + 1) → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑥) = (vol‘(𝐹𝑥))) ↔ (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
67 seq1 13383 . . . . . . . . . . . . . 14 (1 ∈ ℤ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1))
6844, 67ax-mp 5 . . . . . . . . . . . . 13 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1)
69 1nn 11649 . . . . . . . . . . . . . 14 1 ∈ ℕ
70 oveq2 7164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 1 → (1..^𝑘) = (1..^1))
71 fzo0 13062 . . . . . . . . . . . . . . . . . . . . . 22 (1..^1) = ∅
7270, 71syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 1 → (1..^𝑘) = ∅)
7372iuneq1d 4946 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ ∅ (𝐹𝑚))
74 0iun 4986 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ ∅ (𝐹𝑚) = ∅
7573, 74syl6eq 2872 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = ∅)
7675difeq2d 4099 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹𝑘) ∖ ∅))
77 dif0 4332 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∖ ∅) = (𝐹𝑘)
7876, 77syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹𝑘))
79 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8078, 79eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = (𝐹‘1))
8180fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘(𝐹‘1)))
82 fvex 6683 . . . . . . . . . . . . . . 15 (vol‘(𝐹‘1)) ∈ V
8381, 34, 82fvmpt 6768 . . . . . . . . . . . . . 14 (1 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1)))
8469, 83ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘1) = (vol‘(𝐹‘1))
8568, 84eqtri 2844 . . . . . . . . . . . 12 (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1))
8685a1i 11 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘1) = (vol‘(𝐹‘1)))
87 oveq1 7163 . . . . . . . . . . . . . 14 ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
88 seqp1 13385 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ‘1) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
8988, 6eleq2s 2931 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
9089adantl 484 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
91 undif2 4425 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1)))
92 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
93 fvoveq1 7179 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1)))
9492, 93sseq12d 4000 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1))))
95 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
96 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
9794, 95, 96rspcdva 3625 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)))
98 ssequn1 4156 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑗) ⊆ (𝐹‘(𝑗 + 1)) ↔ ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
9997, 98sylib 220 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∪ (𝐹‘(𝑗 + 1))) = (𝐹‘(𝑗 + 1)))
10091, 99syl5req 2869 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) = ((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
101100fveq2d 6674 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
102 simplll 773 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶dom vol)
103102, 96ffvelrnd 6852 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ dom vol)
104 peano2nn 11650 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
105104adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
106102, 105ffvelrnd 6852 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ∈ dom vol)
107 difmbl 24144 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑗 + 1)) ∈ dom vol ∧ (𝐹𝑗) ∈ dom vol) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
108106, 103, 107syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol)
109 disjdif 4421 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅
110109a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅)
111 2fveq3 6675 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (vol‘(𝐹𝑘)) = (vol‘(𝐹𝑗)))
112111eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹𝑗)) ∈ ℝ))
113 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
114112, 113, 96rspcdva 3625 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹𝑗)) ∈ ℝ)
115 mblvol 24131 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
116108, 115syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))))
117 difssd 4109 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)))
118 mblss 24132 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
119106, 118syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) ⊆ ℝ)
120 mblvol 24131 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘(𝑗 + 1)) ∈ dom vol → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
121106, 120syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = (vol*‘(𝐹‘(𝑗 + 1))))
122 2fveq3 6675 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → (vol‘(𝐹𝑘)) = (vol‘(𝐹‘(𝑗 + 1))))
123122eleq1d 2897 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ))
124123, 113, 105rspcdva 3625 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
125121, 124eqeltrrd 2914 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ)
126 ovolsscl 24087 . . . . . . . . . . . . . . . . . . 19 ((((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ⊆ (𝐹‘(𝑗 + 1)) ∧ (𝐹‘(𝑗 + 1)) ⊆ ℝ ∧ (vol*‘(𝐹‘(𝑗 + 1))) ∈ ℝ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
127117, 119, 125, 126syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol*‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
128116, 127eqeltrd 2913 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)
129 volun 24146 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑗) ∈ dom vol ∧ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) ∈ dom vol ∧ ((𝐹𝑗) ∩ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ∅) ∧ ((vol‘(𝐹𝑗)) ∈ ℝ ∧ (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) ∈ ℝ)) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
130103, 108, 110, 114, 128, 129syl32anc 1374 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹𝑗) ∪ ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))))
13195adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
132 elfznn 12937 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑚 ∈ ℕ)
133132adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑚 ∈ ℕ)
134 elfzuz3 12906 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑗) → 𝑗 ∈ (ℤ𝑚))
135134adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → 𝑗 ∈ (ℤ𝑚))
136 volsuplem 24156 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝑚 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑚))) → (𝐹𝑚) ⊆ (𝐹𝑗))
137131, 133, 135, 136syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑗)) → (𝐹𝑚) ⊆ (𝐹𝑗))
138137ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
139 iunss 4969 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗) ↔ ∀𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
140138, 139sylibr 236 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) ⊆ (𝐹𝑗))
14196, 6eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
142 eluzfz2 12916 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ (1...𝑗))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (1...𝑗))
144 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
145144ssiun2s 4972 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (1...𝑗) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
146143, 145syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ⊆ 𝑚 ∈ (1...𝑗)(𝐹𝑚))
147140, 146eqssd 3984 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = (𝐹𝑗))
14896nnzd 12087 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
149 fzval3 13107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℤ → (1...𝑗) = (1..^(𝑗 + 1)))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (1...𝑗) = (1..^(𝑗 + 1)))
151150iuneq1d 4946 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑚 ∈ (1...𝑗)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
152147, 151eqtr3d 2858 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
153152difeq2d 4099 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
154153fveq2d 6674 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
155 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
156 oveq2 7164 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑗 + 1) → (1..^𝑘) = (1..^(𝑗 + 1)))
157156iuneq1d 4946 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑗 + 1) → 𝑚 ∈ (1..^𝑘)(𝐹𝑚) = 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))
158155, 157difeq12d 4100 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)) = ((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚)))
159158fveq2d 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝑗 + 1) → (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
160 fvex 6683 . . . . . . . . . . . . . . . . . . . 20 (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))) ∈ V
161159, 34, 160fvmpt 6768 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
162105, 161syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)) = (vol‘((𝐹‘(𝑗 + 1)) ∖ 𝑚 ∈ (1..^(𝑗 + 1))(𝐹𝑚))))
163154, 162eqtr4d 2859 . . . . . . . . . . . . . . . . 17 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗))) = ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))
164163oveq2d 7172 . . . . . . . . . . . . . . . 16 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol‘(𝐹𝑗)) + (vol‘((𝐹‘(𝑗 + 1)) ∖ (𝐹𝑗)))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
165101, 130, 1643eqtrd 2860 . . . . . . . . . . . . . . 15 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (vol‘(𝐹‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))))
16690, 165eqeq12d 2837 . . . . . . . . . . . . . 14 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))) ↔ ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1))) = ((vol‘(𝐹𝑗)) + ((𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))‘(𝑗 + 1)))))
16787, 166syl5ibr 248 . . . . . . . . . . . . 13 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1)))))
168167expcom 416 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ((seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
169168a2d 29 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))) → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘(𝑗 + 1)) = (vol‘(𝐹‘(𝑗 + 1))))))
17058, 62, 66, 62, 86, 169nnind 11656 . . . . . . . . . 10 (𝑗 ∈ ℕ → (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗))))
171170impcom 410 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = (vol‘(𝐹𝑗)))
172 fvco3 6760 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
17351, 172sylan 582 . . . . . . . . 9 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((vol ∘ 𝐹)‘𝑗) = (vol‘(𝐹𝑗)))
174171, 173eqtr4d 2859 . . . . . . . 8 ((((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚)))))‘𝑗) = ((vol ∘ 𝐹)‘𝑗))
17549, 54, 174eqfnfvd 6805 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol ∘ 𝐹))
176175rneqd 5808 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = ran (vol ∘ 𝐹))
177 rnco2 6106 . . . . . 6 ran (vol ∘ 𝐹) = (vol “ ran 𝐹)
178176, 177syl6eq 2872 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))) = (vol “ ran 𝐹))
179178supeq1d 8910 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → sup(ran seq1( + , (𝑘 ∈ ℕ ↦ (vol‘((𝐹𝑘) ∖ 𝑚 ∈ (1..^𝑘)(𝐹𝑚))))), ℝ*, < ) = sup((vol “ ran 𝐹), ℝ*, < ))
18036, 43, 1793eqtr3d 2864 . . 3 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
181180ex 415 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
182 rexnal 3238 . . 3 (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ ↔ ¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ)
183 fniunfv 7006 . . . . . . . . . . . 12 (𝐹 Fn ℕ → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
18438, 183syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) = ran 𝐹)
185 ffvelrn 6849 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ dom vol)
186185ralrimiva 3182 . . . . . . . . . . . 12 (𝐹:ℕ⟶dom vol → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
187 iunmbl 24154 . . . . . . . . . . . 12 (∀𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
188186, 187syl 17 . . . . . . . . . . 11 (𝐹:ℕ⟶dom vol → 𝑛 ∈ ℕ (𝐹𝑛) ∈ dom vol)
189184, 188eqeltrrd 2914 . . . . . . . . . 10 (𝐹:ℕ⟶dom vol → ran 𝐹 ∈ dom vol)
190189ad2antrr 724 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ∈ dom vol)
191 mblss 24132 . . . . . . . . 9 ( ran 𝐹 ∈ dom vol → ran 𝐹 ⊆ ℝ)
192190, 191syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ran 𝐹 ⊆ ℝ)
193 ovolcl 24079 . . . . . . . 8 ( ran 𝐹 ⊆ ℝ → (vol*‘ ran 𝐹) ∈ ℝ*)
194192, 193syl 17 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ∈ ℝ*)
195 pnfge 12526 . . . . . . 7 ((vol*‘ ran 𝐹) ∈ ℝ* → (vol*‘ ran 𝐹) ≤ +∞)
196194, 195syl 17 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) ≤ +∞)
197 simprr 771 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol‘(𝐹𝑘)) ∈ ℝ)
1981ad2ant2r 745 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ dom vol)
199198, 18syl 17 . . . . . . . . . . . 12 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ℝ)
200 ovolcl 24079 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → (vol*‘(𝐹𝑘)) ∈ ℝ*)
201199, 200syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ∈ ℝ*)
202 xrrebnd 12562 . . . . . . . . . . 11 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
203201, 202syl 17 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
204198, 20syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = (vol*‘(𝐹𝑘)))
205204eleq1d 2897 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) ∈ ℝ))
206 ovolge0 24082 . . . . . . . . . . . . 13 ((𝐹𝑘) ⊆ ℝ → 0 ≤ (vol*‘(𝐹𝑘)))
207 mnflt0 12521 . . . . . . . . . . . . . 14 -∞ < 0
208 mnfxr 10698 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
209 0xr 10688 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
210 xrltletr 12551 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐹𝑘)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
211208, 209, 210mp3an12 1447 . . . . . . . . . . . . . 14 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐹𝑘))) → -∞ < (vol*‘(𝐹𝑘))))
212207, 211mpani 694 . . . . . . . . . . . . 13 ((vol*‘(𝐹𝑘)) ∈ ℝ* → (0 ≤ (vol*‘(𝐹𝑘)) → -∞ < (vol*‘(𝐹𝑘))))
213200, 206, 212sylc 65 . . . . . . . . . . . 12 ((𝐹𝑘) ⊆ ℝ → -∞ < (vol*‘(𝐹𝑘)))
214199, 213syl 17 . . . . . . . . . . 11 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → -∞ < (vol*‘(𝐹𝑘)))
215214biantrurd 535 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) < +∞ ↔ (-∞ < (vol*‘(𝐹𝑘)) ∧ (vol*‘(𝐹𝑘)) < +∞)))
216203, 205, 2153bitr4d 313 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol‘(𝐹𝑘)) ∈ ℝ ↔ (vol*‘(𝐹𝑘)) < +∞))
217197, 216mtbid 326 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ¬ (vol*‘(𝐹𝑘)) < +∞)
218 nltpnft 12558 . . . . . . . . 9 ((vol*‘(𝐹𝑘)) ∈ ℝ* → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
219201, 218syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘(𝐹𝑘)) = +∞ ↔ ¬ (vol*‘(𝐹𝑘)) < +∞))
220217, 219mpbird 259 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) = +∞)
22138ad2antrr 724 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹 Fn ℕ)
222 simprl 769 . . . . . . . . . 10 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝑘 ∈ ℕ)
223 fnfvelrn 6848 . . . . . . . . . 10 ((𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ran 𝐹)
224221, 222, 223syl2anc 586 . . . . . . . . 9 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ∈ ran 𝐹)
225 elssuni 4868 . . . . . . . . 9 ((𝐹𝑘) ∈ ran 𝐹 → (𝐹𝑘) ⊆ ran 𝐹)
226224, 225syl 17 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (𝐹𝑘) ⊆ ran 𝐹)
227 ovolss 24086 . . . . . . . 8 (((𝐹𝑘) ⊆ ran 𝐹 ran 𝐹 ⊆ ℝ) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
228226, 192, 227syl2anc 586 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘(𝐹𝑘)) ≤ (vol*‘ ran 𝐹))
229220, 228eqbrtrrd 5090 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ≤ (vol*‘ ran 𝐹))
230 pnfxr 10695 . . . . . . 7 +∞ ∈ ℝ*
231 xrletri3 12548 . . . . . . 7 (((vol*‘ ran 𝐹) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
232194, 230, 231sylancl 588 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → ((vol*‘ ran 𝐹) = +∞ ↔ ((vol*‘ ran 𝐹) ≤ +∞ ∧ +∞ ≤ (vol*‘ ran 𝐹))))
233196, 229, 232mpbir2and 711 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol*‘ ran 𝐹) = +∞)
234 mblvol 24131 . . . . . 6 ( ran 𝐹 ∈ dom vol → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
235190, 234syl 17 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = (vol*‘ ran 𝐹))
236 imassrn 5940 . . . . . . 7 (vol “ ran 𝐹) ⊆ ran vol
237 frn 6520 . . . . . . . . 9 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
23850, 237ax-mp 5 . . . . . . . 8 ran vol ⊆ (0[,]+∞)
239 iccssxr 12820 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
240238, 239sstri 3976 . . . . . . 7 ran vol ⊆ ℝ*
241236, 240sstri 3976 . . . . . 6 (vol “ ran 𝐹) ⊆ ℝ*
242204, 220eqtrd 2856 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) = +∞)
243 simpll 765 . . . . . . . 8 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → 𝐹:ℕ⟶dom vol)
244 ffun 6517 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → Fun vol)
24550, 244ax-mp 5 . . . . . . . . 9 Fun vol
246 frn 6520 . . . . . . . . 9 (𝐹:ℕ⟶dom vol → ran 𝐹 ⊆ dom vol)
247 funfvima2 6993 . . . . . . . . 9 ((Fun vol ∧ ran 𝐹 ⊆ dom vol) → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
248245, 246, 247sylancr 589 . . . . . . . 8 (𝐹:ℕ⟶dom vol → ((𝐹𝑘) ∈ ran 𝐹 → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹)))
249243, 224, 248sylc 65 . . . . . . 7 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘(𝐹𝑘)) ∈ (vol “ ran 𝐹))
250242, 249eqeltrrd 2914 . . . . . 6 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → +∞ ∈ (vol “ ran 𝐹))
251 supxrpnf 12712 . . . . . 6 (((vol “ ran 𝐹) ⊆ ℝ* ∧ +∞ ∈ (vol “ ran 𝐹)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
252241, 250, 251sylancr 589 . . . . 5 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → sup((vol “ ran 𝐹), ℝ*, < ) = +∞)
253233, 235, 2523eqtr4d 2866 . . . 4 (((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ∧ (𝑘 ∈ ℕ ∧ ¬ (vol‘(𝐹𝑘)) ∈ ℝ)) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
254253rexlimdvaa 3285 . . 3 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (∃𝑘 ∈ ℕ ¬ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
255182, 254syl5bir 245 . 2 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (¬ ∀𝑘 ∈ ℕ (vol‘(𝐹𝑘)) ∈ ℝ → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )))
256181, 255pm2.61d 181 1 ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291   cuni 4838   ciun 4919  Disj wdisj 5031   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  supcsup 8904  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  cn 11638  cz 11982  cuz 12244  [,]cicc 12742  ...cfz 12893  ..^cfzo 13034  seqcseq 13370  vol*covol 24063  volcvol 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xadd 12509  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24065  df-vol 24066
This theorem is referenced by:  volsup2  24206  itg1climres  24315  itg2gt0  24361
  Copyright terms: Public domain W3C validator