MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkson Structured version   Visualization version   GIF version

Theorem wlkson 26455
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkson.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkson ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝐺,𝑝   𝑓,𝑉,𝑝

Proof of Theorem wlkson
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . 5 𝑉 = (Vtx‘𝐺)
211vgrex 25816 . . . 4 (𝐴𝑉𝐺 ∈ V)
32adantr 481 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
4 simpl 473 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
54, 1syl6eleq 2708 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
6 simpr 477 . . . 4 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
76, 1syl6eleq 2708 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
8 wksv 26419 . . . 4 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
98a1i 11 . . 3 ((𝐴𝑉𝐵𝑉) → {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V)
10 simpr 477 . . 3 (((𝐴𝑉𝐵𝑉) ∧ 𝑓(Walks‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)
11 eqeq2 2632 . . . 4 (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴))
12 eqeq2 2632 . . . 4 (𝑏 = 𝐵 → ((𝑝‘(#‘𝑓)) = 𝑏 ↔ (𝑝‘(#‘𝑓)) = 𝐵))
1311, 12bi2anan9 916 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
14 biidd 252 . . 3 (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)))
15 df-wlkson 26400 . . . 4 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}))
16 eqid 2621 . . . . . 6 (Vtx‘𝑔) = (Vtx‘𝑔)
17 3anass 1040 . . . . . . . 8 ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)))
18 ancom 466 . . . . . . . 8 ((𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝))
1917, 18bitri 264 . . . . . . 7 ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝))
2019opabbii 4689 . . . . . 6 {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)} = {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}
2116, 16, 20mpt2eq123i 6683 . . . . 5 (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})
2221mpteq2i 4711 . . . 4 (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}))
2315, 22eqtri 2643 . . 3 WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}))
243, 5, 7, 9, 10, 13, 14, 23mptmpt2opabbrd 7208 . 2 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)})
25 ancom 466 . . . 4 ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
26 3anass 1040 . . . 4 ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)))
2725, 26bitr4i 267 . . 3 ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))
2827opabbii 4689 . 2 {⟨𝑓, 𝑝⟩ ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}
2924, 28syl6eq 2671 1 ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3190   class class class wbr 4623  {copab 4682  cmpt 4683  cfv 5857  (class class class)co 6615  cmpt2 6617  0cc0 9896  #chash 13073  Vtxcvtx 25808  Walkscwlks 26396  WalksOncwlkson 26397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-wlks 26399  df-wlkson 26400
This theorem is referenced by:  iswlkon  26456  wlkonprop  26457
  Copyright terms: Public domain W3C validator