Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > 19.8a | GIF version |
Description: Existential introduction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
19.8a.1 | ⊢ A:∗ |
Ref | Expression |
---|---|
19.8a | ⊢ A⊧(∃λx:α A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a.1 | . . . 4 ⊢ A:∗ | |
2 | 1 | ax-id 24 | . . 3 ⊢ A⊧A |
3 | 1 | beta 92 | . . . 4 ⊢ ⊤⊧[(λx:α Ax:α) = A] |
4 | 1, 3 | a1i 28 | . . 3 ⊢ A⊧[(λx:α Ax:α) = A] |
5 | 2, 4 | mpbir 87 | . 2 ⊢ A⊧(λx:α Ax:α) |
6 | 1 | wl 66 | . . 3 ⊢ λx:α A:(α → ∗) |
7 | wv 64 | . . 3 ⊢ x:α:α | |
8 | 6, 7 | ax4e 168 | . 2 ⊢ (λx:α Ax:α)⊧(∃λx:α A) |
9 | 5, 8 | syl 16 | 1 ⊢ A⊧(∃λx:α A) |
Colors of variables: type var term |
Syntax hints: tv 1 ∗hb 3 kc 5 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ∃tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: eximdv 185 alnex 186 ax9 212 |
Copyright terms: Public domain | W3C validator |