Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > cla4v | GIF version |
Description: If A(x) is true for all x:α, then it is true for C = A(B). (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
cla4v.1 | ⊢ A:∗ |
cla4v.2 | ⊢ B:α |
cla4v.3 | ⊢ [x:α = B]⊧[A = C] |
Ref | Expression |
---|---|
cla4v | ⊢ (∀λx:α A)⊧C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cla4v.1 | . . . 4 ⊢ A:∗ | |
2 | 1 | wl 66 | . . 3 ⊢ λx:α A:(α → ∗) |
3 | cla4v.2 | . . 3 ⊢ B:α | |
4 | 2, 3 | ax4g 149 | . 2 ⊢ (∀λx:α A)⊧(λx:α AB) |
5 | 4 | ax-cb1 29 | . . 3 ⊢ (∀λx:α A):∗ |
6 | cla4v.3 | . . . 4 ⊢ [x:α = B]⊧[A = C] | |
7 | 1, 3, 6 | cl 116 | . . 3 ⊢ ⊤⊧[(λx:α AB) = C] |
8 | 5, 7 | a1i 28 | . 2 ⊢ (∀λx:α A)⊧[(λx:α AB) = C] |
9 | 4, 8 | mpbi 82 | 1 ⊢ (∀λx:α A)⊧C |
Colors of variables: type var term |
Syntax hints: tv 1 ∗hb 3 kc 5 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ∀tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 |
This theorem is referenced by: pm2.21 153 ecase 163 exlimdv2 166 ax4e 168 eta 178 exlimd 183 ac 197 ax10 213 |
Copyright terms: Public domain | W3C validator |