ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ntop Unicode version

Theorem 0ntop 14327
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
Assertion
Ref Expression
0ntop  |-  -.  (/)  e.  Top

Proof of Theorem 0ntop
StepHypRef Expression
1 noel 3455 . 2  |-  -.  (/)  e.  (/)
2 0opn 14326 . 2  |-  ( (/)  e.  Top  ->  (/)  e.  (/) )
31, 2mto 663 1  |-  -.  (/)  e.  Top
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2167   (/)c0 3451   Topctop 14317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-uni 3841  df-top 14318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator