ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0opn Unicode version

Theorem 0opn 12644
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn  |-  ( J  e.  Top  ->  (/)  e.  J
)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 3816 . 2  |-  U. (/)  =  (/)
2 0ss 3447 . . 3  |-  (/)  C_  J
3 uniopn 12639 . . 3  |-  ( ( J  e.  Top  /\  (/)  C_  J )  ->  U. (/)  e.  J
)
42, 3mpan2 422 . 2  |-  ( J  e.  Top  ->  U. (/)  e.  J
)
51, 4eqeltrrid 2254 1  |-  ( J  e.  Top  ->  (/)  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    C_ wss 3116   (/)c0 3409   U.cuni 3789   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-uni 3790  df-top 12636
This theorem is referenced by:  0ntop  12645  topgele  12667  istps  12670  topontopn  12675  tgclb  12705  en1top  12717  topcld  12749  ntr0  12774  0nei  12806  restrcl  12807  rest0  12819  mopn0  13128
  Copyright terms: Public domain W3C validator