ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0opn Unicode version

Theorem 0opn 12183
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn  |-  ( J  e.  Top  ->  (/)  e.  J
)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 3763 . 2  |-  U. (/)  =  (/)
2 0ss 3401 . . 3  |-  (/)  C_  J
3 uniopn 12178 . . 3  |-  ( ( J  e.  Top  /\  (/)  C_  J )  ->  U. (/)  e.  J
)
42, 3mpan2 421 . 2  |-  ( J  e.  Top  ->  U. (/)  e.  J
)
51, 4eqeltrrid 2227 1  |-  ( J  e.  Top  ->  (/)  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480    C_ wss 3071   (/)c0 3363   U.cuni 3736   Topctop 12174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-uni 3737  df-top 12175
This theorem is referenced by:  0ntop  12184  topgele  12206  istps  12209  topontopn  12214  tgclb  12244  en1top  12256  topcld  12288  ntr0  12313  0nei  12345  restrcl  12346  rest0  12358  mopn0  12667
  Copyright terms: Public domain W3C validator