Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0opn | Unicode version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 3816 | . 2 | |
2 | 0ss 3447 | . . 3 | |
3 | uniopn 12639 | . . 3 | |
4 | 2, 3 | mpan2 422 | . 2 |
5 | 1, 4 | eqeltrrid 2254 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wss 3116 c0 3409 cuni 3789 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-top 12636 |
This theorem is referenced by: 0ntop 12645 topgele 12667 istps 12670 topontopn 12675 tgclb 12705 en1top 12717 topcld 12749 ntr0 12774 0nei 12806 restrcl 12807 rest0 12819 mopn0 13128 |
Copyright terms: Public domain | W3C validator |