ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ntop GIF version

Theorem 0ntop 14549
Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
Assertion
Ref Expression
0ntop ¬ ∅ ∈ Top

Proof of Theorem 0ntop
StepHypRef Expression
1 noel 3468 . 2 ¬ ∅ ∈ ∅
2 0opn 14548 . 2 (∅ ∈ Top → ∅ ∈ ∅)
31, 2mto 664 1 ¬ ∅ ∈ Top
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  c0 3464  Topctop 14539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4169
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-uni 3856  df-top 14540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator