ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn Unicode version

Theorem topopn 12800
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
topopn  |-  ( J  e.  Top  ->  X  e.  J )

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2  |-  X  = 
U. J
2 ssid 3167 . . 3  |-  J  C_  J
3 uniopn 12793 . . 3  |-  ( ( J  e.  Top  /\  J  C_  J )  ->  U. J  e.  J
)
42, 3mpan2 423 . 2  |-  ( J  e.  Top  ->  U. J  e.  J )
51, 4eqeltrid 2257 1  |-  ( J  e.  Top  ->  X  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    C_ wss 3121   U.cuni 3796   Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-top 12790
This theorem is referenced by:  toponmax  12817  cldval  12893  ntrfval  12894  clsfval  12895  iscld  12897  ntrval  12904  clsval  12905  0cld  12906  ntrtop  12922  neifval  12934  neif  12935  neival  12937  isnei  12938  tpnei  12954  cnrest  13029  txcn  13069
  Copyright terms: Public domain W3C validator