ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn Unicode version

Theorem topopn 14176
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
topopn  |-  ( J  e.  Top  ->  X  e.  J )

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2  |-  X  = 
U. J
2 ssid 3199 . . 3  |-  J  C_  J
3 uniopn 14169 . . 3  |-  ( ( J  e.  Top  /\  J  C_  J )  ->  U. J  e.  J
)
42, 3mpan2 425 . 2  |-  ( J  e.  Top  ->  U. J  e.  J )
51, 4eqeltrid 2280 1  |-  ( J  e.  Top  ->  X  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    C_ wss 3153   U.cuni 3835   Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-uni 3836  df-top 14166
This theorem is referenced by:  toponmax  14193  cldval  14267  ntrfval  14268  clsfval  14269  iscld  14271  ntrval  14278  clsval  14279  0cld  14280  ntrtop  14296  neifval  14308  neif  14309  neival  14311  isnei  14312  tpnei  14328  cnrest  14403  txcn  14443
  Copyright terms: Public domain W3C validator