| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topopn | Unicode version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 |
|
| Ref | Expression |
|---|---|
| topopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 |
. 2
| |
| 2 | ssid 3244 |
. . 3
| |
| 3 | uniopn 14675 |
. . 3
| |
| 4 | 2, 3 | mpan2 425 |
. 2
|
| 5 | 1, 4 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 df-top 14672 |
| This theorem is referenced by: toponmax 14699 cldval 14773 ntrfval 14774 clsfval 14775 iscld 14777 ntrval 14784 clsval 14785 0cld 14786 ntrtop 14802 neifval 14814 neif 14815 neival 14817 isnei 14818 tpnei 14834 cnrest 14909 txcn 14949 dvply1 15439 |
| Copyright terms: Public domain | W3C validator |