Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topopn | Unicode version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 |
Ref | Expression |
---|---|
topopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 | |
2 | ssid 3167 | . . 3 | |
3 | uniopn 12793 | . . 3 | |
4 | 2, 3 | mpan2 423 | . 2 |
5 | 1, 4 | eqeltrid 2257 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wss 3121 cuni 3796 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 df-top 12790 |
This theorem is referenced by: toponmax 12817 cldval 12893 ntrfval 12894 clsfval 12895 iscld 12897 ntrval 12904 clsval 12905 0cld 12906 ntrtop 12922 neifval 12934 neif 12935 neival 12937 isnei 12938 tpnei 12954 cnrest 13029 txcn 13069 |
Copyright terms: Public domain | W3C validator |