| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topopn | Unicode version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 |
|
| Ref | Expression |
|---|---|
| topopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 |
. 2
| |
| 2 | ssid 3221 |
. . 3
| |
| 3 | uniopn 14588 |
. . 3
| |
| 4 | 2, 3 | mpan2 425 |
. 2
|
| 5 | 1, 4 | eqeltrid 2294 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-uni 3865 df-top 14585 |
| This theorem is referenced by: toponmax 14612 cldval 14686 ntrfval 14687 clsfval 14688 iscld 14690 ntrval 14697 clsval 14698 0cld 14699 ntrtop 14715 neifval 14727 neif 14728 neival 14730 isnei 14731 tpnei 14747 cnrest 14822 txcn 14862 dvply1 15352 |
| Copyright terms: Public domain | W3C validator |