| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > topopn | Unicode version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) | 
| Ref | Expression | 
|---|---|
| 1open.1 | 
 | 
| Ref | Expression | 
|---|---|
| topopn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1open.1 | 
. 2
 | |
| 2 | ssid 3203 | 
. . 3
 | |
| 3 | uniopn 14237 | 
. . 3
 | |
| 4 | 2, 3 | mpan2 425 | 
. 2
 | 
| 5 | 1, 4 | eqeltrid 2283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 df-top 14234 | 
| This theorem is referenced by: toponmax 14261 cldval 14335 ntrfval 14336 clsfval 14337 iscld 14339 ntrval 14346 clsval 14347 0cld 14348 ntrtop 14364 neifval 14376 neif 14377 neival 14379 isnei 14380 tpnei 14396 cnrest 14471 txcn 14511 dvply1 15001 | 
| Copyright terms: Public domain | W3C validator |