ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn Unicode version

Theorem topopn 14595
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
topopn  |-  ( J  e.  Top  ->  X  e.  J )

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2  |-  X  = 
U. J
2 ssid 3221 . . 3  |-  J  C_  J
3 uniopn 14588 . . 3  |-  ( ( J  e.  Top  /\  J  C_  J )  ->  U. J  e.  J
)
42, 3mpan2 425 . 2  |-  ( J  e.  Top  ->  U. J  e.  J )
51, 4eqeltrid 2294 1  |-  ( J  e.  Top  ->  X  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    C_ wss 3174   U.cuni 3864   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-uni 3865  df-top 14585
This theorem is referenced by:  toponmax  14612  cldval  14686  ntrfval  14687  clsfval  14688  iscld  14690  ntrval  14697  clsval  14698  0cld  14699  ntrtop  14715  neifval  14727  neif  14728  neival  14730  isnei  14731  tpnei  14747  cnrest  14822  txcn  14862  dvply1  15352
  Copyright terms: Public domain W3C validator