ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn Unicode version

Theorem topopn 13547
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
topopn  |-  ( J  e.  Top  ->  X  e.  J )

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2  |-  X  = 
U. J
2 ssid 3177 . . 3  |-  J  C_  J
3 uniopn 13540 . . 3  |-  ( ( J  e.  Top  /\  J  C_  J )  ->  U. J  e.  J
)
42, 3mpan2 425 . 2  |-  ( J  e.  Top  ->  U. J  e.  J )
51, 4eqeltrid 2264 1  |-  ( J  e.  Top  ->  X  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    C_ wss 3131   U.cuni 3811   Topctop 13536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812  df-top 13537
This theorem is referenced by:  toponmax  13564  cldval  13638  ntrfval  13639  clsfval  13640  iscld  13642  ntrval  13649  clsval  13650  0cld  13651  ntrtop  13667  neifval  13679  neif  13680  neival  13682  isnei  13683  tpnei  13699  cnrest  13774  txcn  13814
  Copyright terms: Public domain W3C validator