ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topopn Unicode version

Theorem topopn 14682
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
Hypothesis
Ref Expression
1open.1  |-  X  = 
U. J
Assertion
Ref Expression
topopn  |-  ( J  e.  Top  ->  X  e.  J )

Proof of Theorem topopn
StepHypRef Expression
1 1open.1 . 2  |-  X  = 
U. J
2 ssid 3244 . . 3  |-  J  C_  J
3 uniopn 14675 . . 3  |-  ( ( J  e.  Top  /\  J  C_  J )  ->  U. J  e.  J
)
42, 3mpan2 425 . 2  |-  ( J  e.  Top  ->  U. J  e.  J )
51, 4eqeltrid 2316 1  |-  ( J  e.  Top  ->  X  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    C_ wss 3197   U.cuni 3888   Topctop 14671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889  df-top 14672
This theorem is referenced by:  toponmax  14699  cldval  14773  ntrfval  14774  clsfval  14775  iscld  14777  ntrval  14784  clsval  14785  0cld  14786  ntrtop  14802  neifval  14814  neif  14815  neival  14817  isnei  14818  tpnei  14834  cnrest  14909  txcn  14949  dvply1  15439
  Copyright terms: Public domain W3C validator