| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topopn | Unicode version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 |
|
| Ref | Expression |
|---|---|
| topopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 |
. 2
| |
| 2 | ssid 3213 |
. . 3
| |
| 3 | uniopn 14506 |
. . 3
| |
| 4 | 2, 3 | mpan2 425 |
. 2
|
| 5 | 1, 4 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 df-top 14503 |
| This theorem is referenced by: toponmax 14530 cldval 14604 ntrfval 14605 clsfval 14606 iscld 14608 ntrval 14615 clsval 14616 0cld 14617 ntrtop 14633 neifval 14645 neif 14646 neival 14648 isnei 14649 tpnei 14665 cnrest 14740 txcn 14780 dvply1 15270 |
| Copyright terms: Public domain | W3C validator |