Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabxp | Unicode version |
Description: Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
rabxp.1 |
Ref | Expression |
---|---|
rabxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4637 | . . . . 5 | |
2 | 1 | anbi1i 458 | . . . 4 |
3 | 19.41vv 1901 | . . . 4 | |
4 | anass 401 | . . . . . 6 | |
5 | rabxp.1 | . . . . . . . . 9 | |
6 | 5 | anbi2d 464 | . . . . . . . 8 |
7 | df-3an 980 | . . . . . . . 8 | |
8 | 6, 7 | bitr4di 198 | . . . . . . 7 |
9 | 8 | pm5.32i 454 | . . . . . 6 |
10 | 4, 9 | bitri 184 | . . . . 5 |
11 | 10 | 2exbii 1604 | . . . 4 |
12 | 2, 3, 11 | 3bitr2i 208 | . . 3 |
13 | 12 | abbii 2291 | . 2 |
14 | df-rab 2462 | . 2 | |
15 | df-opab 4060 | . 2 | |
16 | 13, 14, 15 | 3eqtr4i 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wex 1490 wcel 2146 cab 2161 crab 2457 cop 3592 copab 4058 cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |