Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabxp | Unicode version |
Description: Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.) |
Ref | Expression |
---|---|
rabxp.1 |
Ref | Expression |
---|---|
rabxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4621 | . . . . 5 | |
2 | 1 | anbi1i 454 | . . . 4 |
3 | 19.41vv 1891 | . . . 4 | |
4 | anass 399 | . . . . . 6 | |
5 | rabxp.1 | . . . . . . . . 9 | |
6 | 5 | anbi2d 460 | . . . . . . . 8 |
7 | df-3an 970 | . . . . . . . 8 | |
8 | 6, 7 | bitr4di 197 | . . . . . . 7 |
9 | 8 | pm5.32i 450 | . . . . . 6 |
10 | 4, 9 | bitri 183 | . . . . 5 |
11 | 10 | 2exbii 1594 | . . . 4 |
12 | 2, 3, 11 | 3bitr2i 207 | . . 3 |
13 | 12 | abbii 2282 | . 2 |
14 | df-rab 2453 | . 2 | |
15 | df-opab 4044 | . 2 | |
16 | 13, 14, 15 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wex 1480 wcel 2136 cab 2151 crab 2448 cop 3579 copab 4042 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |