ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpomptx Unicode version

Theorem mpomptx 6009
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 
B ( x ) is not assumed to be constant w.r.t  x. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
mpomptx  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y, z, A    y, B, z   
x, C, y    z, D
Allowed substitution hints:    B( x)    C( z)    D( x, y)

Proof of Theorem mpomptx
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4092 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  { <. z ,  w >.  |  ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }
2 df-mpo 5923 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) }
3 eliunxp 4801 . . . . . . 7  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
43anbi1i 458 . . . . . 6  |-  ( ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )
)
5 19.41vv 1915 . . . . . 6  |-  ( E. x E. y ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) )  /\  w  =  C )
)
6 anass 401 . . . . . . . 8  |-  ( ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( z  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) ) )
7 mpompt.1 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
87eqeq2d 2205 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( w  =  C  <->  w  =  D
) )
98anbi2d 464 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C
)  <->  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
109pm5.32i 454 . . . . . . . 8  |-  ( ( z  =  <. x ,  y >.  /\  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  C ) )  <->  ( z  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
116, 10bitri 184 . . . . . . 7  |-  ( ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  ( z  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
12112exbii 1617 . . . . . 6  |-  ( E. x E. y ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
)  /\  w  =  C )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
134, 5, 123bitr2i 208 . . . . 5  |-  ( ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) )
1413opabbii 4096 . . . 4  |-  { <. z ,  w >.  |  ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }  =  { <. z ,  w >.  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) }
15 dfoprab2 5965 . . . 4  |-  { <. <.
x ,  y >. ,  w >.  |  (
( x  e.  A  /\  y  e.  B
)  /\  w  =  D ) }  =  { <. z ,  w >.  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) ) }
1614, 15eqtr4i 2217 . . 3  |-  { <. z ,  w >.  |  ( z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }  =  { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  D ) }
172, 16eqtr4i 2217 . 2  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. z ,  w >.  |  (
z  e.  U_ x  e.  A  ( {
x }  X.  B
)  /\  w  =  C ) }
181, 17eqtr4i 2217 1  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   {csn 3618   <.cop 3621   U_ciun 3912   {copab 4089    |-> cmpt 4090    X. cxp 4657   {coprab 5919    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-iun 3914  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  mpompt  6010  mpomptsx  6250  dmmpossx  6252  fmpox  6253
  Copyright terms: Public domain W3C validator