Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpomptx | Unicode version |
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version is not assumed to be constant w.r.t . (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpompt.1 |
Ref | Expression |
---|---|
mpomptx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4052 | . 2 | |
2 | df-mpo 5858 | . . 3 | |
3 | eliunxp 4750 | . . . . . . 7 | |
4 | 3 | anbi1i 455 | . . . . . 6 |
5 | 19.41vv 1896 | . . . . . 6 | |
6 | anass 399 | . . . . . . . 8 | |
7 | mpompt.1 | . . . . . . . . . . 11 | |
8 | 7 | eqeq2d 2182 | . . . . . . . . . 10 |
9 | 8 | anbi2d 461 | . . . . . . . . 9 |
10 | 9 | pm5.32i 451 | . . . . . . . 8 |
11 | 6, 10 | bitri 183 | . . . . . . 7 |
12 | 11 | 2exbii 1599 | . . . . . 6 |
13 | 4, 5, 12 | 3bitr2i 207 | . . . . 5 |
14 | 13 | opabbii 4056 | . . . 4 |
15 | dfoprab2 5900 | . . . 4 | |
16 | 14, 15 | eqtr4i 2194 | . . 3 |
17 | 2, 16 | eqtr4i 2194 | . 2 |
18 | 1, 17 | eqtr4i 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 csn 3583 cop 3586 ciun 3873 copab 4049 cmpt 4050 cxp 4609 coprab 5854 cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: mpompt 5945 mpomptsx 6176 dmmpossx 6178 fmpox 6179 |
Copyright terms: Public domain | W3C validator |