| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomptx | Unicode version | ||
| Description: Express a two-argument
function as a one-argument function, or
vice-versa. In this version |
| Ref | Expression |
|---|---|
| mpompt.1 |
|
| Ref | Expression |
|---|---|
| mpomptx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4106 |
. 2
| |
| 2 | df-mpo 5948 |
. . 3
| |
| 3 | eliunxp 4816 |
. . . . . . 7
| |
| 4 | 3 | anbi1i 458 |
. . . . . 6
|
| 5 | 19.41vv 1926 |
. . . . . 6
| |
| 6 | anass 401 |
. . . . . . . 8
| |
| 7 | mpompt.1 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq2d 2216 |
. . . . . . . . . 10
|
| 9 | 8 | anbi2d 464 |
. . . . . . . . 9
|
| 10 | 9 | pm5.32i 454 |
. . . . . . . 8
|
| 11 | 6, 10 | bitri 184 |
. . . . . . 7
|
| 12 | 11 | 2exbii 1628 |
. . . . . 6
|
| 13 | 4, 5, 12 | 3bitr2i 208 |
. . . . 5
|
| 14 | 13 | opabbii 4110 |
. . . 4
|
| 15 | dfoprab2 5991 |
. . . 4
| |
| 16 | 14, 15 | eqtr4i 2228 |
. . 3
|
| 17 | 2, 16 | eqtr4i 2228 |
. 2
|
| 18 | 1, 17 | eqtr4i 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-iun 3928 df-opab 4105 df-mpt 4106 df-xp 4680 df-rel 4681 df-oprab 5947 df-mpo 5948 |
| This theorem is referenced by: mpompt 6036 mpomptsx 6282 dmmpossx 6284 fmpox 6285 |
| Copyright terms: Public domain | W3C validator |