Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpomptx | Unicode version |
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version is not assumed to be constant w.r.t . (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpompt.1 |
Ref | Expression |
---|---|
mpomptx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4045 | . 2 | |
2 | df-mpo 5847 | . . 3 | |
3 | eliunxp 4743 | . . . . . . 7 | |
4 | 3 | anbi1i 454 | . . . . . 6 |
5 | 19.41vv 1891 | . . . . . 6 | |
6 | anass 399 | . . . . . . . 8 | |
7 | mpompt.1 | . . . . . . . . . . 11 | |
8 | 7 | eqeq2d 2177 | . . . . . . . . . 10 |
9 | 8 | anbi2d 460 | . . . . . . . . 9 |
10 | 9 | pm5.32i 450 | . . . . . . . 8 |
11 | 6, 10 | bitri 183 | . . . . . . 7 |
12 | 11 | 2exbii 1594 | . . . . . 6 |
13 | 4, 5, 12 | 3bitr2i 207 | . . . . 5 |
14 | 13 | opabbii 4049 | . . . 4 |
15 | dfoprab2 5889 | . . . 4 | |
16 | 14, 15 | eqtr4i 2189 | . . 3 |
17 | 2, 16 | eqtr4i 2189 | . 2 |
18 | 1, 17 | eqtr4i 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 csn 3576 cop 3579 ciun 3866 copab 4042 cmpt 4043 cxp 4602 coprab 5843 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-opab 4044 df-mpt 4045 df-xp 4610 df-rel 4611 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: mpompt 5934 mpomptsx 6165 dmmpossx 6167 fmpox 6168 |
Copyright terms: Public domain | W3C validator |