| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpomptx | Unicode version | ||
| Description: Express a two-argument
function as a one-argument function, or
vice-versa. In this version |
| Ref | Expression |
|---|---|
| mpompt.1 |
|
| Ref | Expression |
|---|---|
| mpomptx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4146 |
. 2
| |
| 2 | df-mpo 6005 |
. . 3
| |
| 3 | eliunxp 4860 |
. . . . . . 7
| |
| 4 | 3 | anbi1i 458 |
. . . . . 6
|
| 5 | 19.41vv 1950 |
. . . . . 6
| |
| 6 | anass 401 |
. . . . . . . 8
| |
| 7 | mpompt.1 |
. . . . . . . . . . 11
| |
| 8 | 7 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 9 | 8 | anbi2d 464 |
. . . . . . . . 9
|
| 10 | 9 | pm5.32i 454 |
. . . . . . . 8
|
| 11 | 6, 10 | bitri 184 |
. . . . . . 7
|
| 12 | 11 | 2exbii 1652 |
. . . . . 6
|
| 13 | 4, 5, 12 | 3bitr2i 208 |
. . . . 5
|
| 14 | 13 | opabbii 4150 |
. . . 4
|
| 15 | dfoprab2 6050 |
. . . 4
| |
| 16 | 14, 15 | eqtr4i 2253 |
. . 3
|
| 17 | 2, 16 | eqtr4i 2253 |
. 2
|
| 18 | 1, 17 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3966 df-opab 4145 df-mpt 4146 df-xp 4724 df-rel 4725 df-oprab 6004 df-mpo 6005 |
| This theorem is referenced by: mpompt 6095 mpomptsx 6341 dmmpossx 6343 fmpox 6344 |
| Copyright terms: Public domain | W3C validator |