ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpi Unicode version

Theorem nqpi 7319
Description: Decomposition of a positive fraction into numerator and denominator. Similar to dmaddpqlem 7318 but also shows that the numerator and denominator are positive integers. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
nqpi  |-  ( A  e.  Q.  ->  E. w E. v ( ( w  e.  N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
Distinct variable group:    v, A, w

Proof of Theorem nqpi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6553 . . 3  |-  ( A  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. a  e.  ( N.  X.  N. ) A  =  [ a ]  ~Q  )
2 elxpi 4620 . . . . . . 7  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
) )
32anim1i 338 . . . . . 6  |-  ( ( a  e.  ( N. 
X.  N. )  /\  A  =  [ a ]  ~Q  )  ->  ( E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  ) )
4 19.41vv 1891 . . . . . 6  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  ) 
<->  ( E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  ) )
53, 4sylibr 133 . . . . 5  |-  ( ( a  e.  ( N. 
X.  N. )  /\  A  =  [ a ]  ~Q  )  ->  E. w E. v
( ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  ) )
6 simplr 520 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  )  ->  ( w  e. 
N.  /\  v  e.  N. ) )
7 simpr 109 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  )  ->  A  =  [
a ]  ~Q  )
8 eceq1 6536 . . . . . . . . 9  |-  ( a  =  <. w ,  v
>.  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
98ad2antrr 480 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  )  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
107, 9eqtrd 2198 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  )  ->  A  =  [ <. w ,  v >. ]  ~Q  )
116, 10jca 304 . . . . . 6  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  )  ->  ( ( w  e.  N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
12112eximi 1589 . . . . 5  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  A  =  [ a ]  ~Q  )  ->  E. w E. v
( ( w  e. 
N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
135, 12syl 14 . . . 4  |-  ( ( a  e.  ( N. 
X.  N. )  /\  A  =  [ a ]  ~Q  )  ->  E. w E. v
( ( w  e. 
N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
1413rexlimiva 2578 . . 3  |-  ( E. a  e.  ( N. 
X.  N. ) A  =  [ a ]  ~Q  ->  E. w E. v
( ( w  e. 
N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
151, 14syl 14 . 2  |-  ( A  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. w E. v
( ( w  e. 
N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
16 df-nqqs 7289 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1715, 16eleq2s 2261 1  |-  ( A  e.  Q.  ->  E. w E. v ( ( w  e.  N.  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ]  ~Q  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   <.cop 3579    X. cxp 4602   [cec 6499   /.cqs 6500   N.cnpi 7213    ~Q ceq 7220   Q.cnq 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507  df-nqqs 7289
This theorem is referenced by:  ltdcnq  7338  archnqq  7358  nqpnq0nq  7394  nqnq0a  7395  nqnq0m  7396
  Copyright terms: Public domain W3C validator