| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nqpi | Unicode version | ||
| Description: Decomposition of a positive fraction into numerator and denominator. Similar to dmaddpqlem 7472 but also shows that the numerator and denominator are positive integers. (Contributed by Jim Kingdon, 20-Sep-2019.) |
| Ref | Expression |
|---|---|
| nqpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6664 |
. . 3
| |
| 2 | elxpi 4689 |
. . . . . . 7
| |
| 3 | 2 | anim1i 340 |
. . . . . 6
|
| 4 | 19.41vv 1926 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | eceq1 6645 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
|
| 10 | 7, 9 | eqtrd 2237 |
. . . . . . 7
|
| 11 | 6, 10 | jca 306 |
. . . . . 6
|
| 12 | 11 | 2eximi 1623 |
. . . . 5
|
| 13 | 5, 12 | syl 14 |
. . . 4
|
| 14 | 13 | rexlimiva 2617 |
. . 3
|
| 15 | 1, 14 | syl 14 |
. 2
|
| 16 | df-nqqs 7443 |
. 2
| |
| 17 | 15, 16 | eleq2s 2299 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-ec 6612 df-qs 6616 df-nqqs 7443 |
| This theorem is referenced by: ltdcnq 7492 archnqq 7512 nqpnq0nq 7548 nqnq0a 7549 nqnq0m 7550 |
| Copyright terms: Public domain | W3C validator |