| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nqpi | Unicode version | ||
| Description: Decomposition of a positive fraction into numerator and denominator. Similar to dmaddpqlem 7510 but also shows that the numerator and denominator are positive integers. (Contributed by Jim Kingdon, 20-Sep-2019.) |
| Ref | Expression |
|---|---|
| nqpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6687 |
. . 3
| |
| 2 | elxpi 4699 |
. . . . . . 7
| |
| 3 | 2 | anim1i 340 |
. . . . . 6
|
| 4 | 19.41vv 1928 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | eceq1 6668 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
|
| 10 | 7, 9 | eqtrd 2239 |
. . . . . . 7
|
| 11 | 6, 10 | jca 306 |
. . . . . 6
|
| 12 | 11 | 2eximi 1625 |
. . . . 5
|
| 13 | 5, 12 | syl 14 |
. . . 4
|
| 14 | 13 | rexlimiva 2619 |
. . 3
|
| 15 | 1, 14 | syl 14 |
. 2
|
| 16 | df-nqqs 7481 |
. 2
| |
| 17 | 15, 16 | eleq2s 2301 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-ec 6635 df-qs 6639 df-nqqs 7481 |
| This theorem is referenced by: ltdcnq 7530 archnqq 7550 nqpnq0nq 7586 nqnq0a 7587 nqnq0m 7588 |
| Copyright terms: Public domain | W3C validator |