| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nq0nn | Unicode version | ||
| Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| nq0nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6732 |
. . 3
| |
| 2 | elxpi 4734 |
. . . . . . 7
| |
| 3 | 2 | anim1i 340 |
. . . . . 6
|
| 4 | 19.41vv 1950 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | eceq1 6713 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
|
| 10 | 7, 9 | eqtrd 2262 |
. . . . . . 7
|
| 11 | 6, 10 | jca 306 |
. . . . . 6
|
| 12 | 11 | 2eximi 1647 |
. . . . 5
|
| 13 | 5, 12 | syl 14 |
. . . 4
|
| 14 | 13 | rexlimiva 2643 |
. . 3
|
| 15 | 1, 14 | syl 14 |
. 2
|
| 16 | df-nq0 7608 |
. 2
| |
| 17 | 15, 16 | eleq2s 2324 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-ec 6680 df-qs 6684 df-nq0 7608 |
| This theorem is referenced by: nqpnq0nq 7636 nq0m0r 7639 nq0a0 7640 nq02m 7648 |
| Copyright terms: Public domain | W3C validator |