ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn Unicode version

Theorem nq0nn 7554
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Distinct variable group:    v, A, w

Proof of Theorem nq0nn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6673 . . 3  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. a  e.  ( om  X.  N. ) A  =  [
a ] ~Q0  )
2 elxpi 4690 . . . . . . 7  |-  ( a  e.  ( om  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
) )
32anim1i 340 . . . . . 6  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  ( E. w E. v ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
4 19.41vv 1926 . . . . . 6  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  <->  ( E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  ) )
53, 4sylibr 134 . . . . 5  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
6 simplr 528 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( w  e.  om  /\  v  e. 
N. ) )
7 simpr 110 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ a ] ~Q0  )
8 eceq1 6654 . . . . . . . . 9  |-  ( a  =  <. w ,  v
>.  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
98ad2antrr 488 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
107, 9eqtrd 2237 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
116, 10jca 306 . . . . . 6  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( (
w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  ) )
12112eximi 1623 . . . . 5  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
135, 12syl 14 . . . 4  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
1413rexlimiva 2617 . . 3  |-  ( E. a  e.  ( om 
X.  N. ) A  =  [ a ] ~Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
151, 14syl 14 . 2  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
16 df-nq0 7537 . 2  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1715, 16eleq2s 2299 1  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   E.wrex 2484   <.cop 3635   omcom 4637    X. cxp 4672   [cec 6617   /.cqs 6618   N.cnpi 7384   ~Q0 ceq0 7398  Q0cnq0 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-ec 6621  df-qs 6625  df-nq0 7537
This theorem is referenced by:  nqpnq0nq  7565  nq0m0r  7568  nq0a0  7569  nq02m  7577
  Copyright terms: Public domain W3C validator