| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nq0nn | Unicode version | ||
| Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| nq0nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6674 |
. . 3
| |
| 2 | elxpi 4691 |
. . . . . . 7
| |
| 3 | 2 | anim1i 340 |
. . . . . 6
|
| 4 | 19.41vv 1927 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | eceq1 6655 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
|
| 10 | 7, 9 | eqtrd 2238 |
. . . . . . 7
|
| 11 | 6, 10 | jca 306 |
. . . . . 6
|
| 12 | 11 | 2eximi 1624 |
. . . . 5
|
| 13 | 5, 12 | syl 14 |
. . . 4
|
| 14 | 13 | rexlimiva 2618 |
. . 3
|
| 15 | 1, 14 | syl 14 |
. 2
|
| 16 | df-nq0 7538 |
. 2
| |
| 17 | 15, 16 | eleq2s 2300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-ec 6622 df-qs 6626 df-nq0 7538 |
| This theorem is referenced by: nqpnq0nq 7566 nq0m0r 7569 nq0a0 7570 nq02m 7578 |
| Copyright terms: Public domain | W3C validator |