ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn Unicode version

Theorem nq0nn 7509
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Distinct variable group:    v, A, w

Proof of Theorem nq0nn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6646 . . 3  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. a  e.  ( om  X.  N. ) A  =  [
a ] ~Q0  )
2 elxpi 4679 . . . . . . 7  |-  ( a  e.  ( om  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
) )
32anim1i 340 . . . . . 6  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  ( E. w E. v ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
4 19.41vv 1918 . . . . . 6  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  <->  ( E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  ) )
53, 4sylibr 134 . . . . 5  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
6 simplr 528 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( w  e.  om  /\  v  e. 
N. ) )
7 simpr 110 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ a ] ~Q0  )
8 eceq1 6627 . . . . . . . . 9  |-  ( a  =  <. w ,  v
>.  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
98ad2antrr 488 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
107, 9eqtrd 2229 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
116, 10jca 306 . . . . . 6  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( (
w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  ) )
12112eximi 1615 . . . . 5  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
135, 12syl 14 . . . 4  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
1413rexlimiva 2609 . . 3  |-  ( E. a  e.  ( om 
X.  N. ) A  =  [ a ] ~Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
151, 14syl 14 . 2  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
16 df-nq0 7492 . 2  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1715, 16eleq2s 2291 1  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   <.cop 3625   omcom 4626    X. cxp 4661   [cec 6590   /.cqs 6591   N.cnpi 7339   ~Q0 ceq0 7353  Q0cnq0 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598  df-nq0 7492
This theorem is referenced by:  nqpnq0nq  7520  nq0m0r  7523  nq0a0  7524  nq02m  7532
  Copyright terms: Public domain W3C validator