Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nq0nn | Unicode version |
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
Ref | Expression |
---|---|
nq0nn | Q0 ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 6553 | . . 3 ~Q0 ~Q0 | |
2 | elxpi 4620 | . . . . . . 7 | |
3 | 2 | anim1i 338 | . . . . . 6 ~Q0 ~Q0 |
4 | 19.41vv 1891 | . . . . . 6 ~Q0 ~Q0 | |
5 | 3, 4 | sylibr 133 | . . . . 5 ~Q0 ~Q0 |
6 | simplr 520 | . . . . . . 7 ~Q0 | |
7 | simpr 109 | . . . . . . . 8 ~Q0 ~Q0 | |
8 | eceq1 6536 | . . . . . . . . 9 ~Q0 ~Q0 | |
9 | 8 | ad2antrr 480 | . . . . . . . 8 ~Q0 ~Q0 ~Q0 |
10 | 7, 9 | eqtrd 2198 | . . . . . . 7 ~Q0 ~Q0 |
11 | 6, 10 | jca 304 | . . . . . 6 ~Q0 ~Q0 |
12 | 11 | 2eximi 1589 | . . . . 5 ~Q0 ~Q0 |
13 | 5, 12 | syl 14 | . . . 4 ~Q0 ~Q0 |
14 | 13 | rexlimiva 2578 | . . 3 ~Q0 ~Q0 |
15 | 1, 14 | syl 14 | . 2 ~Q0 ~Q0 |
16 | df-nq0 7366 | . 2 Q0 ~Q0 | |
17 | 15, 16 | eleq2s 2261 | 1 Q0 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wrex 2445 cop 3579 com 4567 cxp 4602 cec 6499 cqs 6500 cnpi 7213 ~Q0 ceq0 7227 Q0cnq0 7228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 df-nq0 7366 |
This theorem is referenced by: nqpnq0nq 7394 nq0m0r 7397 nq0a0 7398 nq02m 7406 |
Copyright terms: Public domain | W3C validator |