| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nq0nn | Unicode version | ||
| Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| nq0nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6646 |
. . 3
| |
| 2 | elxpi 4679 |
. . . . . . 7
| |
| 3 | 2 | anim1i 340 |
. . . . . 6
|
| 4 | 19.41vv 1918 |
. . . . . 6
| |
| 5 | 3, 4 | sylibr 134 |
. . . . 5
|
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | simpr 110 |
. . . . . . . 8
| |
| 8 | eceq1 6627 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . 8
|
| 10 | 7, 9 | eqtrd 2229 |
. . . . . . 7
|
| 11 | 6, 10 | jca 306 |
. . . . . 6
|
| 12 | 11 | 2eximi 1615 |
. . . . 5
|
| 13 | 5, 12 | syl 14 |
. . . 4
|
| 14 | 13 | rexlimiva 2609 |
. . 3
|
| 15 | 1, 14 | syl 14 |
. 2
|
| 16 | df-nq0 7492 |
. 2
| |
| 17 | 15, 16 | eleq2s 2291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 df-qs 6598 df-nq0 7492 |
| This theorem is referenced by: nqpnq0nq 7520 nq0m0r 7523 nq0a0 7524 nq02m 7532 |
| Copyright terms: Public domain | W3C validator |