ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn Unicode version

Theorem nq0nn 7585
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Distinct variable group:    v, A, w

Proof of Theorem nq0nn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6692 . . 3  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. a  e.  ( om  X.  N. ) A  =  [
a ] ~Q0  )
2 elxpi 4704 . . . . . . 7  |-  ( a  e.  ( om  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
) )
32anim1i 340 . . . . . 6  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  ( E. w E. v ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
4 19.41vv 1928 . . . . . 6  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  <->  ( E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  ) )
53, 4sylibr 134 . . . . 5  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
6 simplr 528 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( w  e.  om  /\  v  e. 
N. ) )
7 simpr 110 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ a ] ~Q0  )
8 eceq1 6673 . . . . . . . . 9  |-  ( a  =  <. w ,  v
>.  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
98ad2antrr 488 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
107, 9eqtrd 2239 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
116, 10jca 306 . . . . . 6  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( (
w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  ) )
12112eximi 1625 . . . . 5  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
135, 12syl 14 . . . 4  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
1413rexlimiva 2619 . . 3  |-  ( E. a  e.  ( om 
X.  N. ) A  =  [ a ] ~Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
151, 14syl 14 . 2  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
16 df-nq0 7568 . 2  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1715, 16eleq2s 2301 1  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   E.wrex 2486   <.cop 3641   omcom 4651    X. cxp 4686   [cec 6636   /.cqs 6637   N.cnpi 7415   ~Q0 ceq0 7429  Q0cnq0 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-ec 6640  df-qs 6644  df-nq0 7568
This theorem is referenced by:  nqpnq0nq  7596  nq0m0r  7599  nq0a0  7600  nq02m  7608
  Copyright terms: Public domain W3C validator