ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0nn Unicode version

Theorem nq0nn 7198
Description: Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
Assertion
Ref Expression
nq0nn  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Distinct variable group:    v, A, w

Proof of Theorem nq0nn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6435 . . 3  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. a  e.  ( om  X.  N. ) A  =  [
a ] ~Q0  )
2 elxpi 4515 . . . . . . 7  |-  ( a  e.  ( om  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
) )
32anim1i 336 . . . . . 6  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  ( E. w E. v ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
4 19.41vv 1857 . . . . . 6  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  <->  ( E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  ) )
53, 4sylibr 133 . . . . 5  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( a  =  <. w ,  v
>.  /\  ( w  e. 
om  /\  v  e.  N. ) )  /\  A  =  [ a ] ~Q0  ) )
6 simplr 502 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( w  e.  om  /\  v  e. 
N. ) )
7 simpr 109 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ a ] ~Q0  )
8 eceq1 6418 . . . . . . . . 9  |-  ( a  =  <. w ,  v
>.  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
98ad2antrr 477 . . . . . . . 8  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  [ a ] ~Q0  =  [ <. w ,  v
>. ] ~Q0  )
107, 9eqtrd 2147 . . . . . . 7  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
116, 10jca 302 . . . . . 6  |-  ( ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  ( (
w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  ) )
12112eximi 1563 . . . . 5  |-  ( E. w E. v ( ( a  =  <. w ,  v >.  /\  (
w  e.  om  /\  v  e.  N. )
)  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
135, 12syl 14 . . . 4  |-  ( ( a  e.  ( om 
X.  N. )  /\  A  =  [ a ] ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
1413rexlimiva 2518 . . 3  |-  ( E. a  e.  ( om 
X.  N. ) A  =  [ a ] ~Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
151, 14syl 14 . 2  |-  ( A  e.  ( ( om 
X.  N. ) /. ~Q0  )  ->  E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
16 df-nq0 7181 . 2  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
1715, 16eleq2s 2209 1  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314   E.wex 1451    e. wcel 1463   E.wrex 2391   <.cop 3496   omcom 4464    X. cxp 4497   [cec 6381   /.cqs 6382   N.cnpi 7028   ~Q0 ceq0 7042  Q0cnq0 7043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-ec 6385  df-qs 6389  df-nq0 7181
This theorem is referenced by:  nqpnq0nq  7209  nq0m0r  7212  nq0a0  7213  nq02m  7221
  Copyright terms: Public domain W3C validator