| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmaddpqlem | Unicode version | ||
| Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7566. (Contributed by Jim Kingdon, 15-Sep-2019.) |
| Ref | Expression |
|---|---|
| dmaddpqlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6734 |
. . 3
| |
| 2 | elxpi 4735 |
. . . . . . . 8
| |
| 3 | simpl 109 |
. . . . . . . . 9
| |
| 4 | 3 | 2eximi 1647 |
. . . . . . . 8
|
| 5 | 2, 4 | syl 14 |
. . . . . . 7
|
| 6 | 5 | anim1i 340 |
. . . . . 6
|
| 7 | 19.41vv 1950 |
. . . . . 6
| |
| 8 | 6, 7 | sylibr 134 |
. . . . 5
|
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | eceq1 6715 |
. . . . . . . 8
| |
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 9, 11 | eqtrd 2262 |
. . . . . 6
|
| 13 | 12 | 2eximi 1647 |
. . . . 5
|
| 14 | 8, 13 | syl 14 |
. . . 4
|
| 15 | 14 | rexlimiva 2643 |
. . 3
|
| 16 | 1, 15 | syl 14 |
. 2
|
| 17 | df-nqqs 7535 |
. 2
| |
| 18 | 16, 17 | eleq2s 2324 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-ec 6682 df-qs 6686 df-nqqs 7535 |
| This theorem is referenced by: dmaddpq 7566 dmmulpq 7567 |
| Copyright terms: Public domain | W3C validator |