ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpqlem Unicode version

Theorem dmaddpqlem 7525
Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7527. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
dmaddpqlem  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
Distinct variable group:    w, v, x

Proof of Theorem dmaddpqlem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6697 . . 3  |-  ( x  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. a  e.  ( N.  X.  N. )
x  =  [ a ]  ~Q  )
2 elxpi 4709 . . . . . . . 8  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
) )
3 simpl 109 . . . . . . . . 9  |-  ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  ->  a  =  <. w ,  v >.
)
432eximi 1625 . . . . . . . 8  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  ->  E. w E. v  a  =  <. w ,  v >.
)
52, 4syl 14 . . . . . . 7  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v  a  =  <. w ,  v >.
)
65anim1i 340 . . . . . 6  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  ( E. w E. v  a  =  <. w ,  v >.  /\  x  =  [
a ]  ~Q  )
)
7 19.41vv 1928 . . . . . 6  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) 
<->  ( E. w E. v  a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) )
86, 7sylibr 134 . . . . 5  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v
( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) )
9 simpr 110 . . . . . . 7  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  x  =  [
a ]  ~Q  )
10 eceq1 6678 . . . . . . . 8  |-  ( a  =  <. w ,  v
>.  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
1110adantr 276 . . . . . . 7  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
129, 11eqtrd 2240 . . . . . 6  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  x  =  [ <. w ,  v >. ]  ~Q  )
13122eximi 1625 . . . . 5  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
148, 13syl 14 . . . 4  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
1514rexlimiva 2620 . . 3  |-  ( E. a  e.  ( N. 
X.  N. ) x  =  [ a ]  ~Q  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
161, 15syl 14 . 2  |-  ( x  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
17 df-nqqs 7496 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1816, 17eleq2s 2302 1  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487   <.cop 3646    X. cxp 4691   [cec 6641   /.cqs 6642   N.cnpi 7420    ~Q ceq 7427   Q.cnq 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-ec 6645  df-qs 6649  df-nqqs 7496
This theorem is referenced by:  dmaddpq  7527  dmmulpq  7528
  Copyright terms: Public domain W3C validator