ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpqlem Unicode version

Theorem dmaddpqlem 7490
Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 7492. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
dmaddpqlem  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
Distinct variable group:    w, v, x

Proof of Theorem dmaddpqlem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6674 . . 3  |-  ( x  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. a  e.  ( N.  X.  N. )
x  =  [ a ]  ~Q  )
2 elxpi 4691 . . . . . . . 8  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
) )
3 simpl 109 . . . . . . . . 9  |-  ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  ->  a  =  <. w ,  v >.
)
432eximi 1624 . . . . . . . 8  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  ->  E. w E. v  a  =  <. w ,  v >.
)
52, 4syl 14 . . . . . . 7  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v  a  =  <. w ,  v >.
)
65anim1i 340 . . . . . 6  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  ( E. w E. v  a  =  <. w ,  v >.  /\  x  =  [
a ]  ~Q  )
)
7 19.41vv 1927 . . . . . 6  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) 
<->  ( E. w E. v  a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) )
86, 7sylibr 134 . . . . 5  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v
( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) )
9 simpr 110 . . . . . . 7  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  x  =  [
a ]  ~Q  )
10 eceq1 6655 . . . . . . . 8  |-  ( a  =  <. w ,  v
>.  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
1110adantr 276 . . . . . . 7  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
129, 11eqtrd 2238 . . . . . 6  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  x  =  [ <. w ,  v >. ]  ~Q  )
13122eximi 1624 . . . . 5  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
148, 13syl 14 . . . 4  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
1514rexlimiva 2618 . . 3  |-  ( E. a  e.  ( N. 
X.  N. ) x  =  [ a ]  ~Q  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
161, 15syl 14 . 2  |-  ( x  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
17 df-nqqs 7461 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1816, 17eleq2s 2300 1  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   <.cop 3636    X. cxp 4673   [cec 6618   /.cqs 6619   N.cnpi 7385    ~Q ceq 7392   Q.cnq 7393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-ec 6622  df-qs 6626  df-nqqs 7461
This theorem is referenced by:  dmaddpq  7492  dmmulpq  7493
  Copyright terms: Public domain W3C validator