ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo4f Unicode version

Theorem rmo4f 2978
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmo4f.1  |-  F/_ x A
rmo4f.2  |-  F/_ y A
rmo4f.3  |-  F/ x ps
rmo4f.4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmo4f  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    A( x, y)

Proof of Theorem rmo4f
StepHypRef Expression
1 rmo4f.1 . . 3  |-  F/_ x A
2 rmo4f.2 . . 3  |-  F/_ y A
3 nfv 1552 . . 3  |-  F/ y
ph
41, 2, 3rmo3f 2977 . 2  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
5 rmo4f.3 . . . . . 6  |-  F/ x ps
6 rmo4f.4 . . . . . 6  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
75, 6sbie 1815 . . . . 5  |-  ( [ y  /  x ] ph 
<->  ps )
87anbi2i 457 . . . 4  |-  ( (
ph  /\  [ y  /  x ] ph )  <->  (
ph  /\  ps )
)
98imbi1i 238 . . 3  |-  ( ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  <->  ( ( ph  /\  ps )  ->  x  =  y )
)
1092ralbii 2516 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) )
114, 10bitri 184 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  ps )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1484   [wsb 1786   F/_wnfc 2337   A.wral 2486   E*wrmo 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rmo 2494
This theorem is referenced by:  disjxp1  6345
  Copyright terms: Public domain W3C validator