ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc Unicode version

Theorem axpre-suploc 7843
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7874. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Distinct variable group:    x, A, y, z

Proof of Theorem axpre-suploc
Dummy variables  a  b  c  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 520 . . 3  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  x  e.  A )
2 eleq1w 2227 . . . 4  |-  ( x  =  d  ->  (
x  e.  A  <->  d  e.  A ) )
32cbvexv 1906 . . 3  |-  ( E. x  x  e.  A  <->  E. d  d  e.  A
)
41, 3sylib 121 . 2  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. d  d  e.  A )
5 simplll 523 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A  C_  RR )
6 simpr 109 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  d  e.  A )
7 simplrl 525 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
8 breq2 3986 . . . . . . . 8  |-  ( a  =  x  ->  (
b  <RR  a  <->  b  <RR  x ) )
98ralbidv 2466 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  b  <RR  a  <->  A. b  e.  A  b  <RR  x ) )
109cbvrexv 2693 . . . . . 6  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. b  e.  A  b 
<RR  x )
11 breq1 3985 . . . . . . . 8  |-  ( b  =  y  ->  (
b  <RR  x  <->  y  <RR  x ) )
1211cbvralv 2692 . . . . . . 7  |-  ( A. b  e.  A  b  <RR  x  <->  A. y  e.  A  y  <RR  x )
1312rexbii 2473 . . . . . 6  |-  ( E. x  e.  RR  A. b  e.  A  b  <RR  x  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
1410, 13bitri 183 . . . . 5  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
157, 14sylibr 133 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  A. b  e.  A  b 
<RR  a )
16 simplrr 526 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
17 breq1 3985 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <RR  b  <->  x  <RR  b ) )
18 breq1 3985 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  <RR  c  <->  x  <RR  c ) )
1918rexbidv 2467 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. c  e.  A  a  <RR  c  <->  E. c  e.  A  x  <RR  c ) )
2019orbi1d 781 . . . . . . . 8  |-  ( a  =  x  ->  (
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
2117, 20imbi12d 233 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <RR  b  -> 
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) ) ) )
22 breq2 3986 . . . . . . . 8  |-  ( b  =  y  ->  (
x  <RR  b  <->  x  <RR  y ) )
23 breq2 3986 . . . . . . . . . 10  |-  ( b  =  y  ->  (
c  <RR  b  <->  c  <RR  y ) )
2423ralbidv 2466 . . . . . . . . 9  |-  ( b  =  y  ->  ( A. c  e.  A  c  <RR  b  <->  A. c  e.  A  c  <RR  y ) )
2524orbi2d 780 . . . . . . . 8  |-  ( b  =  y  ->  (
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
2622, 25imbi12d 233 . . . . . . 7  |-  ( b  =  y  ->  (
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  y  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  y ) ) ) )
2721, 26cbvral2v 2705 . . . . . 6  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
28 breq2 3986 . . . . . . . . . 10  |-  ( c  =  z  ->  (
x  <RR  c  <->  x  <RR  z ) )
2928cbvrexv 2693 . . . . . . . . 9  |-  ( E. c  e.  A  x 
<RR  c  <->  E. z  e.  A  x  <RR  z )
30 breq1 3985 . . . . . . . . . 10  |-  ( c  =  z  ->  (
c  <RR  y  <->  z  <RR  y ) )
3130cbvralv 2692 . . . . . . . . 9  |-  ( A. c  e.  A  c  <RR  y  <->  A. z  e.  A  z  <RR  y )
3229, 31orbi12i 754 . . . . . . . 8  |-  ( ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y )  <->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) )
3332imbi2i 225 . . . . . . 7  |-  ( ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
34332ralbii 2474 . . . . . 6  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3527, 34bitri 183 . . . . 5  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3616, 35sylibr 133 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. a  e.  RR  A. b  e.  RR  (
a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
37 eqid 2165 . . . 4  |-  { w  e.  R.  |  <. w ,  0R >.  e.  A }  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }
385, 6, 15, 36, 37axpre-suploclemres 7842 . . 3  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) ) )
3917notbid 657 . . . . . . . 8  |-  ( a  =  x  ->  ( -.  a  <RR  b  <->  -.  x  <RR  b ) )
4039ralbidv 2466 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  -.  a  <RR  b  <->  A. b  e.  A  -.  x  <RR  b ) )
418imbi1d 230 . . . . . . . 8  |-  ( a  =  x  ->  (
( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4241ralbidv 2466 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4340, 42anbi12d 465 . . . . . 6  |-  ( a  =  x  ->  (
( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <-> 
( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) ) )
4443cbvrexv 2693 . . . . 5  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4522notbid 657 . . . . . . . 8  |-  ( b  =  y  ->  ( -.  x  <RR  b  <->  -.  x  <RR  y ) )
4645cbvralv 2692 . . . . . . 7  |-  ( A. b  e.  A  -.  x  <RR  b  <->  A. y  e.  A  -.  x  <RR  y )
47 breq1 3985 . . . . . . . . . 10  |-  ( b  =  y  ->  (
b  <RR  c  <->  y  <RR  c ) )
4847rexbidv 2467 . . . . . . . . 9  |-  ( b  =  y  ->  ( E. c  e.  A  b  <RR  c  <->  E. c  e.  A  y  <RR  c ) )
4911, 48imbi12d 233 . . . . . . . 8  |-  ( b  =  y  ->  (
( b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5049cbvralv 2692 . . . . . . 7  |-  ( A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )
5146, 50anbi12i 456 . . . . . 6  |-  ( ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5251rexbii 2473 . . . . 5  |-  ( E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5344, 52bitri 183 . . . 4  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
54 breq2 3986 . . . . . . . . 9  |-  ( c  =  z  ->  (
y  <RR  c  <->  y  <RR  z ) )
5554cbvrexv 2693 . . . . . . . 8  |-  ( E. c  e.  A  y 
<RR  c  <->  E. z  e.  A  y  <RR  z )
5655imbi2i 225 . . . . . . 7  |-  ( ( y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5756ralbii 2472 . . . . . 6  |-  ( A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5857anbi2i 453 . . . . 5  |-  ( ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
5958rexbii 2473 . . . 4  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6053, 59bitri 183 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6138, 60sylib 121 . 2  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
624, 61exlimddv 1886 1  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   <.cop 3579   class class class wbr 3982   R.cnr 7238   0Rc0r 7239   RRcr 7752    <RR cltrr 7757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674  df-r 7763  df-lt 7766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator