Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpre-suploc | Unicode version |
Description: An inhabited,
bounded-above, located set of reals has a supremum.
Locatedness here means that given , either there is an element of the set greater than , or is an upper bound. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7874. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-suploc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . 3 | |
2 | eleq1w 2227 | . . . 4 | |
3 | 2 | cbvexv 1906 | . . 3 |
4 | 1, 3 | sylib 121 | . 2 |
5 | simplll 523 | . . . 4 | |
6 | simpr 109 | . . . 4 | |
7 | simplrl 525 | . . . . 5 | |
8 | breq2 3986 | . . . . . . . 8 | |
9 | 8 | ralbidv 2466 | . . . . . . 7 |
10 | 9 | cbvrexv 2693 | . . . . . 6 |
11 | breq1 3985 | . . . . . . . 8 | |
12 | 11 | cbvralv 2692 | . . . . . . 7 |
13 | 12 | rexbii 2473 | . . . . . 6 |
14 | 10, 13 | bitri 183 | . . . . 5 |
15 | 7, 14 | sylibr 133 | . . . 4 |
16 | simplrr 526 | . . . . 5 | |
17 | breq1 3985 | . . . . . . . 8 | |
18 | breq1 3985 | . . . . . . . . . 10 | |
19 | 18 | rexbidv 2467 | . . . . . . . . 9 |
20 | 19 | orbi1d 781 | . . . . . . . 8 |
21 | 17, 20 | imbi12d 233 | . . . . . . 7 |
22 | breq2 3986 | . . . . . . . 8 | |
23 | breq2 3986 | . . . . . . . . . 10 | |
24 | 23 | ralbidv 2466 | . . . . . . . . 9 |
25 | 24 | orbi2d 780 | . . . . . . . 8 |
26 | 22, 25 | imbi12d 233 | . . . . . . 7 |
27 | 21, 26 | cbvral2v 2705 | . . . . . 6 |
28 | breq2 3986 | . . . . . . . . . 10 | |
29 | 28 | cbvrexv 2693 | . . . . . . . . 9 |
30 | breq1 3985 | . . . . . . . . . 10 | |
31 | 30 | cbvralv 2692 | . . . . . . . . 9 |
32 | 29, 31 | orbi12i 754 | . . . . . . . 8 |
33 | 32 | imbi2i 225 | . . . . . . 7 |
34 | 33 | 2ralbii 2474 | . . . . . 6 |
35 | 27, 34 | bitri 183 | . . . . 5 |
36 | 16, 35 | sylibr 133 | . . . 4 |
37 | eqid 2165 | . . . 4 | |
38 | 5, 6, 15, 36, 37 | axpre-suploclemres 7842 | . . 3 |
39 | 17 | notbid 657 | . . . . . . . 8 |
40 | 39 | ralbidv 2466 | . . . . . . 7 |
41 | 8 | imbi1d 230 | . . . . . . . 8 |
42 | 41 | ralbidv 2466 | . . . . . . 7 |
43 | 40, 42 | anbi12d 465 | . . . . . 6 |
44 | 43 | cbvrexv 2693 | . . . . 5 |
45 | 22 | notbid 657 | . . . . . . . 8 |
46 | 45 | cbvralv 2692 | . . . . . . 7 |
47 | breq1 3985 | . . . . . . . . . 10 | |
48 | 47 | rexbidv 2467 | . . . . . . . . 9 |
49 | 11, 48 | imbi12d 233 | . . . . . . . 8 |
50 | 49 | cbvralv 2692 | . . . . . . 7 |
51 | 46, 50 | anbi12i 456 | . . . . . 6 |
52 | 51 | rexbii 2473 | . . . . 5 |
53 | 44, 52 | bitri 183 | . . . 4 |
54 | breq2 3986 | . . . . . . . . 9 | |
55 | 54 | cbvrexv 2693 | . . . . . . . 8 |
56 | 55 | imbi2i 225 | . . . . . . 7 |
57 | 56 | ralbii 2472 | . . . . . 6 |
58 | 57 | anbi2i 453 | . . . . 5 |
59 | 58 | rexbii 2473 | . . . 4 |
60 | 53, 59 | bitri 183 | . . 3 |
61 | 38, 60 | sylib 121 | . 2 |
62 | 4, 61 | exlimddv 1886 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wex 1480 wcel 2136 wral 2444 wrex 2445 crab 2448 wss 3116 cop 3579 class class class wbr 3982 cnr 7238 c0r 7239 cr 7752 cltrr 7757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-iltp 7411 df-enr 7667 df-nr 7668 df-plr 7669 df-mr 7670 df-ltr 7671 df-0r 7672 df-1r 7673 df-m1r 7674 df-r 7763 df-lt 7766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |