ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc Unicode version

Theorem axpre-suploc 7710
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7741. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Distinct variable group:    x, A, y, z

Proof of Theorem axpre-suploc
Dummy variables  a  b  c  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 519 . . 3  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  x  e.  A )
2 eleq1w 2200 . . . 4  |-  ( x  =  d  ->  (
x  e.  A  <->  d  e.  A ) )
32cbvexv 1890 . . 3  |-  ( E. x  x  e.  A  <->  E. d  d  e.  A
)
41, 3sylib 121 . 2  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. d  d  e.  A )
5 simplll 522 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A  C_  RR )
6 simpr 109 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  d  e.  A )
7 simplrl 524 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
8 breq2 3933 . . . . . . . 8  |-  ( a  =  x  ->  (
b  <RR  a  <->  b  <RR  x ) )
98ralbidv 2437 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  b  <RR  a  <->  A. b  e.  A  b  <RR  x ) )
109cbvrexv 2655 . . . . . 6  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. b  e.  A  b 
<RR  x )
11 breq1 3932 . . . . . . . 8  |-  ( b  =  y  ->  (
b  <RR  x  <->  y  <RR  x ) )
1211cbvralv 2654 . . . . . . 7  |-  ( A. b  e.  A  b  <RR  x  <->  A. y  e.  A  y  <RR  x )
1312rexbii 2442 . . . . . 6  |-  ( E. x  e.  RR  A. b  e.  A  b  <RR  x  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
1410, 13bitri 183 . . . . 5  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
157, 14sylibr 133 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  A. b  e.  A  b 
<RR  a )
16 simplrr 525 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
17 breq1 3932 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <RR  b  <->  x  <RR  b ) )
18 breq1 3932 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  <RR  c  <->  x  <RR  c ) )
1918rexbidv 2438 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. c  e.  A  a  <RR  c  <->  E. c  e.  A  x  <RR  c ) )
2019orbi1d 780 . . . . . . . 8  |-  ( a  =  x  ->  (
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
2117, 20imbi12d 233 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <RR  b  -> 
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) ) ) )
22 breq2 3933 . . . . . . . 8  |-  ( b  =  y  ->  (
x  <RR  b  <->  x  <RR  y ) )
23 breq2 3933 . . . . . . . . . 10  |-  ( b  =  y  ->  (
c  <RR  b  <->  c  <RR  y ) )
2423ralbidv 2437 . . . . . . . . 9  |-  ( b  =  y  ->  ( A. c  e.  A  c  <RR  b  <->  A. c  e.  A  c  <RR  y ) )
2524orbi2d 779 . . . . . . . 8  |-  ( b  =  y  ->  (
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
2622, 25imbi12d 233 . . . . . . 7  |-  ( b  =  y  ->  (
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  y  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  y ) ) ) )
2721, 26cbvral2v 2665 . . . . . 6  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
28 breq2 3933 . . . . . . . . . 10  |-  ( c  =  z  ->  (
x  <RR  c  <->  x  <RR  z ) )
2928cbvrexv 2655 . . . . . . . . 9  |-  ( E. c  e.  A  x 
<RR  c  <->  E. z  e.  A  x  <RR  z )
30 breq1 3932 . . . . . . . . . 10  |-  ( c  =  z  ->  (
c  <RR  y  <->  z  <RR  y ) )
3130cbvralv 2654 . . . . . . . . 9  |-  ( A. c  e.  A  c  <RR  y  <->  A. z  e.  A  z  <RR  y )
3229, 31orbi12i 753 . . . . . . . 8  |-  ( ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y )  <->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) )
3332imbi2i 225 . . . . . . 7  |-  ( ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
34332ralbii 2443 . . . . . 6  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3527, 34bitri 183 . . . . 5  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3616, 35sylibr 133 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. a  e.  RR  A. b  e.  RR  (
a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
37 eqid 2139 . . . 4  |-  { w  e.  R.  |  <. w ,  0R >.  e.  A }  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }
385, 6, 15, 36, 37axpre-suploclemres 7709 . . 3  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) ) )
3917notbid 656 . . . . . . . 8  |-  ( a  =  x  ->  ( -.  a  <RR  b  <->  -.  x  <RR  b ) )
4039ralbidv 2437 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  -.  a  <RR  b  <->  A. b  e.  A  -.  x  <RR  b ) )
418imbi1d 230 . . . . . . . 8  |-  ( a  =  x  ->  (
( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4241ralbidv 2437 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4340, 42anbi12d 464 . . . . . 6  |-  ( a  =  x  ->  (
( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <-> 
( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) ) )
4443cbvrexv 2655 . . . . 5  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4522notbid 656 . . . . . . . 8  |-  ( b  =  y  ->  ( -.  x  <RR  b  <->  -.  x  <RR  y ) )
4645cbvralv 2654 . . . . . . 7  |-  ( A. b  e.  A  -.  x  <RR  b  <->  A. y  e.  A  -.  x  <RR  y )
47 breq1 3932 . . . . . . . . . 10  |-  ( b  =  y  ->  (
b  <RR  c  <->  y  <RR  c ) )
4847rexbidv 2438 . . . . . . . . 9  |-  ( b  =  y  ->  ( E. c  e.  A  b  <RR  c  <->  E. c  e.  A  y  <RR  c ) )
4911, 48imbi12d 233 . . . . . . . 8  |-  ( b  =  y  ->  (
( b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5049cbvralv 2654 . . . . . . 7  |-  ( A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )
5146, 50anbi12i 455 . . . . . 6  |-  ( ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5251rexbii 2442 . . . . 5  |-  ( E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5344, 52bitri 183 . . . 4  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
54 breq2 3933 . . . . . . . . 9  |-  ( c  =  z  ->  (
y  <RR  c  <->  y  <RR  z ) )
5554cbvrexv 2655 . . . . . . . 8  |-  ( E. c  e.  A  y 
<RR  c  <->  E. z  e.  A  y  <RR  z )
5655imbi2i 225 . . . . . . 7  |-  ( ( y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5756ralbii 2441 . . . . . 6  |-  ( A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5857anbi2i 452 . . . . 5  |-  ( ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
5958rexbii 2442 . . . 4  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6053, 59bitri 183 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6138, 60sylib 121 . 2  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
624, 61exlimddv 1870 1  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420    C_ wss 3071   <.cop 3530   class class class wbr 3929   R.cnr 7105   0Rc0r 7106   RRcr 7619    <RR cltrr 7624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-1r 7540  df-m1r 7541  df-r 7630  df-lt 7633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator