Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpre-suploc | Unicode version |
Description: An inhabited,
bounded-above, located set of reals has a supremum.
Locatedness here means that given , either there is an element of the set greater than , or is an upper bound. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7895. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpre-suploc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 525 | . . 3 | |
2 | eleq1w 2231 | . . . 4 | |
3 | 2 | cbvexv 1911 | . . 3 |
4 | 1, 3 | sylib 121 | . 2 |
5 | simplll 528 | . . . 4 | |
6 | simpr 109 | . . . 4 | |
7 | simplrl 530 | . . . . 5 | |
8 | breq2 3993 | . . . . . . . 8 | |
9 | 8 | ralbidv 2470 | . . . . . . 7 |
10 | 9 | cbvrexv 2697 | . . . . . 6 |
11 | breq1 3992 | . . . . . . . 8 | |
12 | 11 | cbvralv 2696 | . . . . . . 7 |
13 | 12 | rexbii 2477 | . . . . . 6 |
14 | 10, 13 | bitri 183 | . . . . 5 |
15 | 7, 14 | sylibr 133 | . . . 4 |
16 | simplrr 531 | . . . . 5 | |
17 | breq1 3992 | . . . . . . . 8 | |
18 | breq1 3992 | . . . . . . . . . 10 | |
19 | 18 | rexbidv 2471 | . . . . . . . . 9 |
20 | 19 | orbi1d 786 | . . . . . . . 8 |
21 | 17, 20 | imbi12d 233 | . . . . . . 7 |
22 | breq2 3993 | . . . . . . . 8 | |
23 | breq2 3993 | . . . . . . . . . 10 | |
24 | 23 | ralbidv 2470 | . . . . . . . . 9 |
25 | 24 | orbi2d 785 | . . . . . . . 8 |
26 | 22, 25 | imbi12d 233 | . . . . . . 7 |
27 | 21, 26 | cbvral2v 2709 | . . . . . 6 |
28 | breq2 3993 | . . . . . . . . . 10 | |
29 | 28 | cbvrexv 2697 | . . . . . . . . 9 |
30 | breq1 3992 | . . . . . . . . . 10 | |
31 | 30 | cbvralv 2696 | . . . . . . . . 9 |
32 | 29, 31 | orbi12i 759 | . . . . . . . 8 |
33 | 32 | imbi2i 225 | . . . . . . 7 |
34 | 33 | 2ralbii 2478 | . . . . . 6 |
35 | 27, 34 | bitri 183 | . . . . 5 |
36 | 16, 35 | sylibr 133 | . . . 4 |
37 | eqid 2170 | . . . 4 | |
38 | 5, 6, 15, 36, 37 | axpre-suploclemres 7863 | . . 3 |
39 | 17 | notbid 662 | . . . . . . . 8 |
40 | 39 | ralbidv 2470 | . . . . . . 7 |
41 | 8 | imbi1d 230 | . . . . . . . 8 |
42 | 41 | ralbidv 2470 | . . . . . . 7 |
43 | 40, 42 | anbi12d 470 | . . . . . 6 |
44 | 43 | cbvrexv 2697 | . . . . 5 |
45 | 22 | notbid 662 | . . . . . . . 8 |
46 | 45 | cbvralv 2696 | . . . . . . 7 |
47 | breq1 3992 | . . . . . . . . . 10 | |
48 | 47 | rexbidv 2471 | . . . . . . . . 9 |
49 | 11, 48 | imbi12d 233 | . . . . . . . 8 |
50 | 49 | cbvralv 2696 | . . . . . . 7 |
51 | 46, 50 | anbi12i 457 | . . . . . 6 |
52 | 51 | rexbii 2477 | . . . . 5 |
53 | 44, 52 | bitri 183 | . . . 4 |
54 | breq2 3993 | . . . . . . . . 9 | |
55 | 54 | cbvrexv 2697 | . . . . . . . 8 |
56 | 55 | imbi2i 225 | . . . . . . 7 |
57 | 56 | ralbii 2476 | . . . . . 6 |
58 | 57 | anbi2i 454 | . . . . 5 |
59 | 58 | rexbii 2477 | . . . 4 |
60 | 53, 59 | bitri 183 | . . 3 |
61 | 38, 60 | sylib 121 | . 2 |
62 | 4, 61 | exlimddv 1891 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 wss 3121 cop 3586 class class class wbr 3989 cnr 7259 c0r 7260 cr 7773 cltrr 7778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-imp 7431 df-iltp 7432 df-enr 7688 df-nr 7689 df-plr 7690 df-mr 7691 df-ltr 7692 df-0r 7693 df-1r 7694 df-m1r 7695 df-r 7784 df-lt 7787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |