ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc Unicode version

Theorem axpre-suploc 8014
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8045. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Distinct variable group:    x, A, y, z

Proof of Theorem axpre-suploc
Dummy variables  a  b  c  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  x  e.  A )
2 eleq1w 2265 . . . 4  |-  ( x  =  d  ->  (
x  e.  A  <->  d  e.  A ) )
32cbvexv 1941 . . 3  |-  ( E. x  x  e.  A  <->  E. d  d  e.  A
)
41, 3sylib 122 . 2  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. d  d  e.  A )
5 simplll 533 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A  C_  RR )
6 simpr 110 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  d  e.  A )
7 simplrl 535 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
8 breq2 4047 . . . . . . . 8  |-  ( a  =  x  ->  (
b  <RR  a  <->  b  <RR  x ) )
98ralbidv 2505 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  b  <RR  a  <->  A. b  e.  A  b  <RR  x ) )
109cbvrexv 2738 . . . . . 6  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. b  e.  A  b 
<RR  x )
11 breq1 4046 . . . . . . . 8  |-  ( b  =  y  ->  (
b  <RR  x  <->  y  <RR  x ) )
1211cbvralv 2737 . . . . . . 7  |-  ( A. b  e.  A  b  <RR  x  <->  A. y  e.  A  y  <RR  x )
1312rexbii 2512 . . . . . 6  |-  ( E. x  e.  RR  A. b  e.  A  b  <RR  x  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
1410, 13bitri 184 . . . . 5  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
157, 14sylibr 134 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  A. b  e.  A  b 
<RR  a )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
17 breq1 4046 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <RR  b  <->  x  <RR  b ) )
18 breq1 4046 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  <RR  c  <->  x  <RR  c ) )
1918rexbidv 2506 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. c  e.  A  a  <RR  c  <->  E. c  e.  A  x  <RR  c ) )
2019orbi1d 792 . . . . . . . 8  |-  ( a  =  x  ->  (
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
2117, 20imbi12d 234 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <RR  b  -> 
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) ) ) )
22 breq2 4047 . . . . . . . 8  |-  ( b  =  y  ->  (
x  <RR  b  <->  x  <RR  y ) )
23 breq2 4047 . . . . . . . . . 10  |-  ( b  =  y  ->  (
c  <RR  b  <->  c  <RR  y ) )
2423ralbidv 2505 . . . . . . . . 9  |-  ( b  =  y  ->  ( A. c  e.  A  c  <RR  b  <->  A. c  e.  A  c  <RR  y ) )
2524orbi2d 791 . . . . . . . 8  |-  ( b  =  y  ->  (
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
2622, 25imbi12d 234 . . . . . . 7  |-  ( b  =  y  ->  (
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  y  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  y ) ) ) )
2721, 26cbvral2v 2750 . . . . . 6  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
28 breq2 4047 . . . . . . . . . 10  |-  ( c  =  z  ->  (
x  <RR  c  <->  x  <RR  z ) )
2928cbvrexv 2738 . . . . . . . . 9  |-  ( E. c  e.  A  x 
<RR  c  <->  E. z  e.  A  x  <RR  z )
30 breq1 4046 . . . . . . . . . 10  |-  ( c  =  z  ->  (
c  <RR  y  <->  z  <RR  y ) )
3130cbvralv 2737 . . . . . . . . 9  |-  ( A. c  e.  A  c  <RR  y  <->  A. z  e.  A  z  <RR  y )
3229, 31orbi12i 765 . . . . . . . 8  |-  ( ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y )  <->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) )
3332imbi2i 226 . . . . . . 7  |-  ( ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
34332ralbii 2513 . . . . . 6  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3527, 34bitri 184 . . . . 5  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3616, 35sylibr 134 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. a  e.  RR  A. b  e.  RR  (
a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
37 eqid 2204 . . . 4  |-  { w  e.  R.  |  <. w ,  0R >.  e.  A }  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }
385, 6, 15, 36, 37axpre-suploclemres 8013 . . 3  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) ) )
3917notbid 668 . . . . . . . 8  |-  ( a  =  x  ->  ( -.  a  <RR  b  <->  -.  x  <RR  b ) )
4039ralbidv 2505 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  -.  a  <RR  b  <->  A. b  e.  A  -.  x  <RR  b ) )
418imbi1d 231 . . . . . . . 8  |-  ( a  =  x  ->  (
( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4241ralbidv 2505 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4340, 42anbi12d 473 . . . . . 6  |-  ( a  =  x  ->  (
( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <-> 
( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) ) )
4443cbvrexv 2738 . . . . 5  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4522notbid 668 . . . . . . . 8  |-  ( b  =  y  ->  ( -.  x  <RR  b  <->  -.  x  <RR  y ) )
4645cbvralv 2737 . . . . . . 7  |-  ( A. b  e.  A  -.  x  <RR  b  <->  A. y  e.  A  -.  x  <RR  y )
47 breq1 4046 . . . . . . . . . 10  |-  ( b  =  y  ->  (
b  <RR  c  <->  y  <RR  c ) )
4847rexbidv 2506 . . . . . . . . 9  |-  ( b  =  y  ->  ( E. c  e.  A  b  <RR  c  <->  E. c  e.  A  y  <RR  c ) )
4911, 48imbi12d 234 . . . . . . . 8  |-  ( b  =  y  ->  (
( b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5049cbvralv 2737 . . . . . . 7  |-  ( A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )
5146, 50anbi12i 460 . . . . . 6  |-  ( ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5251rexbii 2512 . . . . 5  |-  ( E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5344, 52bitri 184 . . . 4  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
54 breq2 4047 . . . . . . . . 9  |-  ( c  =  z  ->  (
y  <RR  c  <->  y  <RR  z ) )
5554cbvrexv 2738 . . . . . . . 8  |-  ( E. c  e.  A  y 
<RR  c  <->  E. z  e.  A  y  <RR  z )
5655imbi2i 226 . . . . . . 7  |-  ( ( y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5756ralbii 2511 . . . . . 6  |-  ( A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5857anbi2i 457 . . . . 5  |-  ( ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
5958rexbii 2512 . . . 4  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6053, 59bitri 184 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6138, 60sylib 122 . 2  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
624, 61exlimddv 1921 1  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487    C_ wss 3165   <.cop 3635   class class class wbr 4043   R.cnr 7409   0Rc0r 7410   RRcr 7923    <RR cltrr 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-i1p 7579  df-iplp 7580  df-imp 7581  df-iltp 7582  df-enr 7838  df-nr 7839  df-plr 7840  df-mr 7841  df-ltr 7842  df-0r 7843  df-1r 7844  df-m1r 7845  df-r 7934  df-lt 7937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator