ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc Unicode version

Theorem axpre-suploc 7918
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7949. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Distinct variable group:    x, A, y, z

Proof of Theorem axpre-suploc
Dummy variables  a  b  c  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  x  e.  A )
2 eleq1w 2249 . . . 4  |-  ( x  =  d  ->  (
x  e.  A  <->  d  e.  A ) )
32cbvexv 1929 . . 3  |-  ( E. x  x  e.  A  <->  E. d  d  e.  A
)
41, 3sylib 122 . 2  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. d  d  e.  A )
5 simplll 533 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A  C_  RR )
6 simpr 110 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  d  e.  A )
7 simplrl 535 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
8 breq2 4021 . . . . . . . 8  |-  ( a  =  x  ->  (
b  <RR  a  <->  b  <RR  x ) )
98ralbidv 2489 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  b  <RR  a  <->  A. b  e.  A  b  <RR  x ) )
109cbvrexv 2718 . . . . . 6  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. b  e.  A  b 
<RR  x )
11 breq1 4020 . . . . . . . 8  |-  ( b  =  y  ->  (
b  <RR  x  <->  y  <RR  x ) )
1211cbvralv 2717 . . . . . . 7  |-  ( A. b  e.  A  b  <RR  x  <->  A. y  e.  A  y  <RR  x )
1312rexbii 2496 . . . . . 6  |-  ( E. x  e.  RR  A. b  e.  A  b  <RR  x  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
1410, 13bitri 184 . . . . 5  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
157, 14sylibr 134 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  A. b  e.  A  b 
<RR  a )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
17 breq1 4020 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <RR  b  <->  x  <RR  b ) )
18 breq1 4020 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  <RR  c  <->  x  <RR  c ) )
1918rexbidv 2490 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. c  e.  A  a  <RR  c  <->  E. c  e.  A  x  <RR  c ) )
2019orbi1d 792 . . . . . . . 8  |-  ( a  =  x  ->  (
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
2117, 20imbi12d 234 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <RR  b  -> 
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) ) ) )
22 breq2 4021 . . . . . . . 8  |-  ( b  =  y  ->  (
x  <RR  b  <->  x  <RR  y ) )
23 breq2 4021 . . . . . . . . . 10  |-  ( b  =  y  ->  (
c  <RR  b  <->  c  <RR  y ) )
2423ralbidv 2489 . . . . . . . . 9  |-  ( b  =  y  ->  ( A. c  e.  A  c  <RR  b  <->  A. c  e.  A  c  <RR  y ) )
2524orbi2d 791 . . . . . . . 8  |-  ( b  =  y  ->  (
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
2622, 25imbi12d 234 . . . . . . 7  |-  ( b  =  y  ->  (
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  y  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  y ) ) ) )
2721, 26cbvral2v 2730 . . . . . 6  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
28 breq2 4021 . . . . . . . . . 10  |-  ( c  =  z  ->  (
x  <RR  c  <->  x  <RR  z ) )
2928cbvrexv 2718 . . . . . . . . 9  |-  ( E. c  e.  A  x 
<RR  c  <->  E. z  e.  A  x  <RR  z )
30 breq1 4020 . . . . . . . . . 10  |-  ( c  =  z  ->  (
c  <RR  y  <->  z  <RR  y ) )
3130cbvralv 2717 . . . . . . . . 9  |-  ( A. c  e.  A  c  <RR  y  <->  A. z  e.  A  z  <RR  y )
3229, 31orbi12i 765 . . . . . . . 8  |-  ( ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y )  <->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) )
3332imbi2i 226 . . . . . . 7  |-  ( ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
34332ralbii 2497 . . . . . 6  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3527, 34bitri 184 . . . . 5  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3616, 35sylibr 134 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. a  e.  RR  A. b  e.  RR  (
a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
37 eqid 2188 . . . 4  |-  { w  e.  R.  |  <. w ,  0R >.  e.  A }  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }
385, 6, 15, 36, 37axpre-suploclemres 7917 . . 3  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) ) )
3917notbid 668 . . . . . . . 8  |-  ( a  =  x  ->  ( -.  a  <RR  b  <->  -.  x  <RR  b ) )
4039ralbidv 2489 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  -.  a  <RR  b  <->  A. b  e.  A  -.  x  <RR  b ) )
418imbi1d 231 . . . . . . . 8  |-  ( a  =  x  ->  (
( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4241ralbidv 2489 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4340, 42anbi12d 473 . . . . . 6  |-  ( a  =  x  ->  (
( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <-> 
( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) ) )
4443cbvrexv 2718 . . . . 5  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4522notbid 668 . . . . . . . 8  |-  ( b  =  y  ->  ( -.  x  <RR  b  <->  -.  x  <RR  y ) )
4645cbvralv 2717 . . . . . . 7  |-  ( A. b  e.  A  -.  x  <RR  b  <->  A. y  e.  A  -.  x  <RR  y )
47 breq1 4020 . . . . . . . . . 10  |-  ( b  =  y  ->  (
b  <RR  c  <->  y  <RR  c ) )
4847rexbidv 2490 . . . . . . . . 9  |-  ( b  =  y  ->  ( E. c  e.  A  b  <RR  c  <->  E. c  e.  A  y  <RR  c ) )
4911, 48imbi12d 234 . . . . . . . 8  |-  ( b  =  y  ->  (
( b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5049cbvralv 2717 . . . . . . 7  |-  ( A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )
5146, 50anbi12i 460 . . . . . 6  |-  ( ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5251rexbii 2496 . . . . 5  |-  ( E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5344, 52bitri 184 . . . 4  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
54 breq2 4021 . . . . . . . . 9  |-  ( c  =  z  ->  (
y  <RR  c  <->  y  <RR  z ) )
5554cbvrexv 2718 . . . . . . . 8  |-  ( E. c  e.  A  y 
<RR  c  <->  E. z  e.  A  y  <RR  z )
5655imbi2i 226 . . . . . . 7  |-  ( ( y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5756ralbii 2495 . . . . . 6  |-  ( A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5857anbi2i 457 . . . . 5  |-  ( ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
5958rexbii 2496 . . . 4  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6053, 59bitri 184 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6138, 60sylib 122 . 2  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
624, 61exlimddv 1909 1  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1502    e. wcel 2159   A.wral 2467   E.wrex 2468   {crab 2471    C_ wss 3143   <.cop 3609   class class class wbr 4017   R.cnr 7313   0Rc0r 7314   RRcr 7827    <RR cltrr 7832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-eprel 4303  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-1o 6434  df-2o 6435  df-oadd 6438  df-omul 6439  df-er 6552  df-ec 6554  df-qs 6558  df-ni 7320  df-pli 7321  df-mi 7322  df-lti 7323  df-plpq 7360  df-mpq 7361  df-enq 7363  df-nqqs 7364  df-plqqs 7365  df-mqqs 7366  df-1nqqs 7367  df-rq 7368  df-ltnqqs 7369  df-enq0 7440  df-nq0 7441  df-0nq0 7442  df-plq0 7443  df-mq0 7444  df-inp 7482  df-i1p 7483  df-iplp 7484  df-imp 7485  df-iltp 7486  df-enr 7742  df-nr 7743  df-plr 7744  df-mr 7745  df-ltr 7746  df-0r 7747  df-1r 7748  df-m1r 7749  df-r 7838  df-lt 7841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator