ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc Unicode version

Theorem axpre-suploc 8085
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8116. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Distinct variable group:    x, A, y, z

Proof of Theorem axpre-suploc
Dummy variables  a  b  c  d  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . 3  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  x  e.  A )
2 eleq1w 2290 . . . 4  |-  ( x  =  d  ->  (
x  e.  A  <->  d  e.  A ) )
32cbvexv 1965 . . 3  |-  ( E. x  x  e.  A  <->  E. d  d  e.  A
)
41, 3sylib 122 . 2  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. d  d  e.  A )
5 simplll 533 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A  C_  RR )
6 simpr 110 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  d  e.  A )
7 simplrl 535 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
8 breq2 4086 . . . . . . . 8  |-  ( a  =  x  ->  (
b  <RR  a  <->  b  <RR  x ) )
98ralbidv 2530 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  b  <RR  a  <->  A. b  e.  A  b  <RR  x ) )
109cbvrexv 2766 . . . . . 6  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. b  e.  A  b 
<RR  x )
11 breq1 4085 . . . . . . . 8  |-  ( b  =  y  ->  (
b  <RR  x  <->  y  <RR  x ) )
1211cbvralv 2765 . . . . . . 7  |-  ( A. b  e.  A  b  <RR  x  <->  A. y  e.  A  y  <RR  x )
1312rexbii 2537 . . . . . 6  |-  ( E. x  e.  RR  A. b  e.  A  b  <RR  x  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
1410, 13bitri 184 . . . . 5  |-  ( E. a  e.  RR  A. b  e.  A  b  <RR  a  <->  E. x  e.  RR  A. y  e.  A  y 
<RR  x )
157, 14sylibr 134 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  A. b  e.  A  b 
<RR  a )
16 simplrr 536 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
17 breq1 4085 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <RR  b  <->  x  <RR  b ) )
18 breq1 4085 . . . . . . . . . 10  |-  ( a  =  x  ->  (
a  <RR  c  <->  x  <RR  c ) )
1918rexbidv 2531 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. c  e.  A  a  <RR  c  <->  E. c  e.  A  x  <RR  c ) )
2019orbi1d 796 . . . . . . . 8  |-  ( a  =  x  ->  (
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
2117, 20imbi12d 234 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <RR  b  -> 
( E. c  e.  A  a  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) ) ) )
22 breq2 4086 . . . . . . . 8  |-  ( b  =  y  ->  (
x  <RR  b  <->  x  <RR  y ) )
23 breq2 4086 . . . . . . . . . 10  |-  ( b  =  y  ->  (
c  <RR  b  <->  c  <RR  y ) )
2423ralbidv 2530 . . . . . . . . 9  |-  ( b  =  y  ->  ( A. c  e.  A  c  <RR  b  <->  A. c  e.  A  c  <RR  y ) )
2524orbi2d 795 . . . . . . . 8  |-  ( b  =  y  ->  (
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b )  <->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
2622, 25imbi12d 234 . . . . . . 7  |-  ( b  =  y  ->  (
( x  <RR  b  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  b ) )  <-> 
( x  <RR  y  -> 
( E. c  e.  A  x  <RR  c  \/ 
A. c  e.  A  c  <RR  y ) ) ) )
2721, 26cbvral2v 2778 . . . . . 6  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) ) )
28 breq2 4086 . . . . . . . . . 10  |-  ( c  =  z  ->  (
x  <RR  c  <->  x  <RR  z ) )
2928cbvrexv 2766 . . . . . . . . 9  |-  ( E. c  e.  A  x 
<RR  c  <->  E. z  e.  A  x  <RR  z )
30 breq1 4085 . . . . . . . . . 10  |-  ( c  =  z  ->  (
c  <RR  y  <->  z  <RR  y ) )
3130cbvralv 2765 . . . . . . . . 9  |-  ( A. c  e.  A  c  <RR  y  <->  A. z  e.  A  z  <RR  y )
3229, 31orbi12i 769 . . . . . . . 8  |-  ( ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y )  <->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) )
3332imbi2i 226 . . . . . . 7  |-  ( ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
34332ralbii 2538 . . . . . 6  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. c  e.  A  x  <RR  c  \/  A. c  e.  A  c  <RR  y ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3527, 34bitri 184 . . . . 5  |-  ( A. a  e.  RR  A. b  e.  RR  ( a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) )  <->  A. x  e.  RR  A. y  e.  RR  (
x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )
3616, 35sylibr 134 . . . 4  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  A. a  e.  RR  A. b  e.  RR  (
a  <RR  b  ->  ( E. c  e.  A  a  <RR  c  \/  A. c  e.  A  c  <RR  b ) ) )
37 eqid 2229 . . . 4  |-  { w  e.  R.  |  <. w ,  0R >.  e.  A }  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }
385, 6, 15, 36, 37axpre-suploclemres 8084 . . 3  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) ) )
3917notbid 671 . . . . . . . 8  |-  ( a  =  x  ->  ( -.  a  <RR  b  <->  -.  x  <RR  b ) )
4039ralbidv 2530 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  A  -.  a  <RR  b  <->  A. b  e.  A  -.  x  <RR  b ) )
418imbi1d 231 . . . . . . . 8  |-  ( a  =  x  ->  (
( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4241ralbidv 2530 . . . . . . 7  |-  ( a  =  x  ->  ( A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c )  <->  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4340, 42anbi12d 473 . . . . . 6  |-  ( a  =  x  ->  (
( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  ( b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <-> 
( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) ) )
4443cbvrexv 2766 . . . . 5  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  ( b  <RR  x  ->  E. c  e.  A  b  <RR  c ) ) )
4522notbid 671 . . . . . . . 8  |-  ( b  =  y  ->  ( -.  x  <RR  b  <->  -.  x  <RR  y ) )
4645cbvralv 2765 . . . . . . 7  |-  ( A. b  e.  A  -.  x  <RR  b  <->  A. y  e.  A  -.  x  <RR  y )
47 breq1 4085 . . . . . . . . . 10  |-  ( b  =  y  ->  (
b  <RR  c  <->  y  <RR  c ) )
4847rexbidv 2531 . . . . . . . . 9  |-  ( b  =  y  ->  ( E. c  e.  A  b  <RR  c  <->  E. c  e.  A  y  <RR  c ) )
4911, 48imbi12d 234 . . . . . . . 8  |-  ( b  =  y  ->  (
( b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5049cbvralv 2765 . . . . . . 7  |-  ( A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )
5146, 50anbi12i 460 . . . . . 6  |-  ( ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5251rexbii 2537 . . . . 5  |-  ( E. x  e.  RR  ( A. b  e.  A  -.  x  <RR  b  /\  A. b  e.  RR  (
b  <RR  x  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
5344, 52bitri 184 . . . 4  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. c  e.  A  y  <RR  c ) ) )
54 breq2 4086 . . . . . . . . 9  |-  ( c  =  z  ->  (
y  <RR  c  <->  y  <RR  z ) )
5554cbvrexv 2766 . . . . . . . 8  |-  ( E. c  e.  A  y 
<RR  c  <->  E. z  e.  A  y  <RR  z )
5655imbi2i 226 . . . . . . 7  |-  ( ( y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5756ralbii 2536 . . . . . 6  |-  ( A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c )  <->  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )
5857anbi2i 457 . . . . 5  |-  ( ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
5958rexbii 2537 . . . 4  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. c  e.  A  y  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6053, 59bitri 184 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  a  <RR  b  /\  A. b  e.  RR  (
b  <RR  a  ->  E. c  e.  A  b  <RR  c ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
6138, 60sylib 122 . 2  |-  ( ( ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  /\  d  e.  A )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
624, 61exlimddv 1945 1  |-  ( ( ( A  C_  RR  /\ 
E. x  x  e.  A )  /\  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   <.cop 3669   class class class wbr 4082   R.cnr 7480   0Rc0r 7481   RRcr 7994    <RR cltrr 7999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-imp 7652  df-iltp 7653  df-enr 7909  df-nr 7910  df-plr 7911  df-mr 7912  df-ltr 7913  df-0r 7914  df-1r 7915  df-m1r 7916  df-r 8005  df-lt 8008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator