ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpossym Unicode version

Theorem tpossym 6181
Description: Two ways to say a function is symmetric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tpossym  |-  ( F  Fn  ( A  X.  A )  ->  (tpos  F  =  F  <->  A. x  e.  A  A. y  e.  A  ( x F y )  =  ( y F x ) ) )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem tpossym
StepHypRef Expression
1 tposfn 6178 . . 3  |-  ( F  Fn  ( A  X.  A )  -> tpos  F  Fn  ( A  X.  A
) )
2 eqfnov2 5886 . . 3  |-  ( (tpos 
F  Fn  ( A  X.  A )  /\  F  Fn  ( A  X.  A ) )  -> 
(tpos  F  =  F  <->  A. x  e.  A  A. y  e.  A  (
xtpos  F y )  =  ( x F y ) ) )
31, 2mpancom 419 . 2  |-  ( F  Fn  ( A  X.  A )  ->  (tpos  F  =  F  <->  A. x  e.  A  A. y  e.  A  ( xtpos  F y )  =  ( x F y ) ) )
4 eqcom 2142 . . . 4  |-  ( ( xtpos  F y )  =  ( x F y )  <->  ( x F y )  =  ( xtpos  F y ) )
5 vex 2692 . . . . . 6  |-  x  e. 
_V
6 vex 2692 . . . . . 6  |-  y  e. 
_V
7 ovtposg 6164 . . . . . 6  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( xtpos  F y )  =  ( y F x ) )
85, 6, 7mp2an 423 . . . . 5  |-  ( xtpos 
F y )  =  ( y F x )
98eqeq2i 2151 . . . 4  |-  ( ( x F y )  =  ( xtpos  F
y )  <->  ( x F y )  =  ( y F x ) )
104, 9bitri 183 . . 3  |-  ( ( xtpos  F y )  =  ( x F y )  <->  ( x F y )  =  ( y F x ) )
11102ralbii 2446 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
xtpos  F y )  =  ( x F y )  <->  A. x  e.  A  A. y  e.  A  ( x F y )  =  ( y F x ) )
123, 11syl6bb 195 1  |-  ( F  Fn  ( A  X.  A )  ->  (tpos  F  =  F  <->  A. x  e.  A  A. y  e.  A  ( x F y )  =  ( y F x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   _Vcvv 2689    X. cxp 4545    Fn wfn 5126  (class class class)co 5782  tpos ctpos 6149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-ov 5785  df-tpos 6150
This theorem is referenced by:  xmettpos  12578
  Copyright terms: Public domain W3C validator