| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubm | Unicode version | ||
| Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| issubm.b |
|
| issubm.z |
|
| issubm.p |
|
| Ref | Expression |
|---|---|
| issubm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-submnd 13493 |
. . . 4
| |
| 2 | fveq2 5627 |
. . . . . 6
| |
| 3 | 2 | pweqd 3654 |
. . . . 5
|
| 4 | fveq2 5627 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2298 |
. . . . . 6
|
| 6 | fveq2 5627 |
. . . . . . . . 9
| |
| 7 | 6 | oveqd 6018 |
. . . . . . . 8
|
| 8 | 7 | eleq1d 2298 |
. . . . . . 7
|
| 9 | 8 | 2ralbidv 2554 |
. . . . . 6
|
| 10 | 5, 9 | anbi12d 473 |
. . . . 5
|
| 11 | 3, 10 | rabeqbidv 2794 |
. . . 4
|
| 12 | id 19 |
. . . 4
| |
| 13 | basfn 13091 |
. . . . . . 7
| |
| 14 | elex 2811 |
. . . . . . 7
| |
| 15 | funfvex 5644 |
. . . . . . . 8
| |
| 16 | 15 | funfni 5423 |
. . . . . . 7
|
| 17 | 13, 14, 16 | sylancr 414 |
. . . . . 6
|
| 18 | 17 | pwexd 4265 |
. . . . 5
|
| 19 | rabexg 4227 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 1, 11, 12, 20 | fvmptd3 5728 |
. . 3
|
| 22 | 21 | eleq2d 2299 |
. 2
|
| 23 | eleq2 2293 |
. . . . 5
| |
| 24 | eleq2 2293 |
. . . . . . 7
| |
| 25 | 24 | raleqbi1dv 2740 |
. . . . . 6
|
| 26 | 25 | raleqbi1dv 2740 |
. . . . 5
|
| 27 | 23, 26 | anbi12d 473 |
. . . 4
|
| 28 | 27 | elrab 2959 |
. . 3
|
| 29 | issubm.b |
. . . . . . 7
| |
| 30 | 29 | sseq2i 3251 |
. . . . . 6
|
| 31 | issubm.z |
. . . . . . . 8
| |
| 32 | 31 | eleq1i 2295 |
. . . . . . 7
|
| 33 | issubm.p |
. . . . . . . . . 10
| |
| 34 | 33 | oveqi 6014 |
. . . . . . . . 9
|
| 35 | 34 | eleq1i 2295 |
. . . . . . . 8
|
| 36 | 35 | 2ralbii 2538 |
. . . . . . 7
|
| 37 | 32, 36 | anbi12i 460 |
. . . . . 6
|
| 38 | 30, 37 | anbi12i 460 |
. . . . 5
|
| 39 | 38 | a1i 9 |
. . . 4
|
| 40 | 3anass 1006 |
. . . . 5
| |
| 41 | 40 | a1i 9 |
. . . 4
|
| 42 | elpw2g 4240 |
. . . . . 6
| |
| 43 | 17, 42 | syl 14 |
. . . . 5
|
| 44 | 43 | anbi1d 465 |
. . . 4
|
| 45 | 39, 41, 44 | 3bitr4rd 221 |
. . 3
|
| 46 | 28, 45 | bitrid 192 |
. 2
|
| 47 | 22, 46 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-submnd 13493 |
| This theorem is referenced by: issubm2 13506 issubmd 13507 mndissubm 13508 submss 13509 submid 13510 subm0cl 13511 submcl 13512 0subm 13517 insubm 13518 mhmima 13524 mhmeql 13525 issubg3 13729 issubrg3 14211 cnsubmlem 14542 |
| Copyright terms: Public domain | W3C validator |