ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm Unicode version

Theorem issubm 12868
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b  |-  B  =  ( Base `  M
)
issubm.z  |-  .0.  =  ( 0g `  M )
issubm.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
issubm  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Distinct variable groups:    x, M, y   
x, S, y
Allowed substitution hints:    B( x, y)    .+ ( x, y)    .0. ( x, y)

Proof of Theorem issubm
Dummy variables  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 12857 . . . 4  |- SubMnd  =  ( m  e.  Mnd  |->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t ) } )
2 fveq2 5517 . . . . . 6  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
32pweqd 3582 . . . . 5  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
4 fveq2 5517 . . . . . . 7  |-  ( m  =  M  ->  ( 0g `  m )  =  ( 0g `  M
) )
54eleq1d 2246 . . . . . 6  |-  ( m  =  M  ->  (
( 0g `  m
)  e.  t  <->  ( 0g `  M )  e.  t ) )
6 fveq2 5517 . . . . . . . . 9  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
76oveqd 5894 . . . . . . . 8  |-  ( m  =  M  ->  (
x ( +g  `  m
) y )  =  ( x ( +g  `  M ) y ) )
87eleq1d 2246 . . . . . . 7  |-  ( m  =  M  ->  (
( x ( +g  `  m ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  t ) )
982ralbidv 2501 . . . . . 6  |-  ( m  =  M  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  m ) y )  e.  t  <->  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) )
105, 9anbi12d 473 . . . . 5  |-  ( m  =  M  ->  (
( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) ) )
113, 10rabeqbidv 2734 . . . 4  |-  ( m  =  M  ->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  m
) y )  e.  t ) }  =  { t  e.  ~P ( Base `  M )  |  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) } )
12 id 19 . . . 4  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
13 basfn 12522 . . . . . . 7  |-  Base  Fn  _V
14 elex 2750 . . . . . . 7  |-  ( M  e.  Mnd  ->  M  e.  _V )
15 funfvex 5534 . . . . . . . 8  |-  ( ( Fun  Base  /\  M  e. 
dom  Base )  ->  ( Base `  M )  e. 
_V )
1615funfni 5318 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  M  e.  _V )  ->  ( Base `  M )  e. 
_V )
1713, 14, 16sylancr 414 . . . . . 6  |-  ( M  e.  Mnd  ->  ( Base `  M )  e. 
_V )
1817pwexd 4183 . . . . 5  |-  ( M  e.  Mnd  ->  ~P ( Base `  M )  e.  _V )
19 rabexg 4148 . . . . 5  |-  ( ~P ( Base `  M
)  e.  _V  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) }  e.  _V )
2018, 19syl 14 . . . 4  |-  ( M  e.  Mnd  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  e.  _V )
211, 11, 12, 20fvmptd3 5611 . . 3  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  =  {
t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) } )
2221eleq2d 2247 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  S  e.  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) } ) )
23 eleq2 2241 . . . . 5  |-  ( t  =  S  ->  (
( 0g `  M
)  e.  t  <->  ( 0g `  M )  e.  S
) )
24 eleq2 2241 . . . . . . 7  |-  ( t  =  S  ->  (
( x ( +g  `  M ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  S
) )
2524raleqbi1dv 2681 . . . . . 6  |-  ( t  =  S  ->  ( A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2625raleqbi1dv 2681 . . . . 5  |-  ( t  =  S  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2723, 26anbi12d 473 . . . 4  |-  ( t  =  S  ->  (
( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
2827elrab 2895 . . 3  |-  ( S  e.  { t  e. 
~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  e.  ~P ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
29 issubm.b . . . . . . 7  |-  B  =  ( Base `  M
)
3029sseq2i 3184 . . . . . 6  |-  ( S 
C_  B  <->  S  C_  ( Base `  M ) )
31 issubm.z . . . . . . . 8  |-  .0.  =  ( 0g `  M )
3231eleq1i 2243 . . . . . . 7  |-  (  .0. 
e.  S  <->  ( 0g `  M )  e.  S
)
33 issubm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
3433oveqi 5890 . . . . . . . . 9  |-  ( x 
.+  y )  =  ( x ( +g  `  M ) y )
3534eleq1i 2243 . . . . . . . 8  |-  ( ( x  .+  y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
)
36352ralbii 2485 . . . . . . 7  |-  ( A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S )
3732, 36anbi12i 460 . . . . . 6  |-  ( (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
3830, 37anbi12i 460 . . . . 5  |-  ( ( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
3938a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) ) )
40 3anass 982 . . . . 5  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4140a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) ) )
42 elpw2g 4158 . . . . . 6  |-  ( (
Base `  M )  e.  _V  ->  ( S  e.  ~P ( Base `  M
)  <->  S  C_  ( Base `  M ) ) )
4317, 42syl 14 . . . . 5  |-  ( M  e.  Mnd  ->  ( S  e.  ~P ( Base `  M )  <->  S  C_  ( Base `  M ) ) )
4443anbi1d 465 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) ) )
4539, 41, 443bitr4rd 221 . . 3  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4628, 45bitrid 192 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  { t  e.  ~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
4722, 46bitrd 188 1  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Mndcmnd 12822  SubMndcsubmnd 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-submnd 12857
This theorem is referenced by:  issubm2  12869  issubmd  12870  mndissubm  12871  submss  12872  submid  12873  subm0cl  12874  submcl  12875  0subm  12876  insubm  12877  mhmima  12880  mhmeql  12881  issubg3  13057  issubrg3  13373  cnsubmlem  13511
  Copyright terms: Public domain W3C validator