ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm Unicode version

Theorem issubm 13505
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b  |-  B  =  ( Base `  M
)
issubm.z  |-  .0.  =  ( 0g `  M )
issubm.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
issubm  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Distinct variable groups:    x, M, y   
x, S, y
Allowed substitution hints:    B( x, y)    .+ ( x, y)    .0. ( x, y)

Proof of Theorem issubm
Dummy variables  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13493 . . . 4  |- SubMnd  =  ( m  e.  Mnd  |->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t ) } )
2 fveq2 5627 . . . . . 6  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
32pweqd 3654 . . . . 5  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
4 fveq2 5627 . . . . . . 7  |-  ( m  =  M  ->  ( 0g `  m )  =  ( 0g `  M
) )
54eleq1d 2298 . . . . . 6  |-  ( m  =  M  ->  (
( 0g `  m
)  e.  t  <->  ( 0g `  M )  e.  t ) )
6 fveq2 5627 . . . . . . . . 9  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
76oveqd 6018 . . . . . . . 8  |-  ( m  =  M  ->  (
x ( +g  `  m
) y )  =  ( x ( +g  `  M ) y ) )
87eleq1d 2298 . . . . . . 7  |-  ( m  =  M  ->  (
( x ( +g  `  m ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  t ) )
982ralbidv 2554 . . . . . 6  |-  ( m  =  M  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  m ) y )  e.  t  <->  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) )
105, 9anbi12d 473 . . . . 5  |-  ( m  =  M  ->  (
( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) ) )
113, 10rabeqbidv 2794 . . . 4  |-  ( m  =  M  ->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  m
) y )  e.  t ) }  =  { t  e.  ~P ( Base `  M )  |  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) } )
12 id 19 . . . 4  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
13 basfn 13091 . . . . . . 7  |-  Base  Fn  _V
14 elex 2811 . . . . . . 7  |-  ( M  e.  Mnd  ->  M  e.  _V )
15 funfvex 5644 . . . . . . . 8  |-  ( ( Fun  Base  /\  M  e. 
dom  Base )  ->  ( Base `  M )  e. 
_V )
1615funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  M  e.  _V )  ->  ( Base `  M )  e. 
_V )
1713, 14, 16sylancr 414 . . . . . 6  |-  ( M  e.  Mnd  ->  ( Base `  M )  e. 
_V )
1817pwexd 4265 . . . . 5  |-  ( M  e.  Mnd  ->  ~P ( Base `  M )  e.  _V )
19 rabexg 4227 . . . . 5  |-  ( ~P ( Base `  M
)  e.  _V  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) }  e.  _V )
2018, 19syl 14 . . . 4  |-  ( M  e.  Mnd  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  e.  _V )
211, 11, 12, 20fvmptd3 5728 . . 3  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  =  {
t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) } )
2221eleq2d 2299 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  S  e.  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) } ) )
23 eleq2 2293 . . . . 5  |-  ( t  =  S  ->  (
( 0g `  M
)  e.  t  <->  ( 0g `  M )  e.  S
) )
24 eleq2 2293 . . . . . . 7  |-  ( t  =  S  ->  (
( x ( +g  `  M ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  S
) )
2524raleqbi1dv 2740 . . . . . 6  |-  ( t  =  S  ->  ( A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2625raleqbi1dv 2740 . . . . 5  |-  ( t  =  S  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2723, 26anbi12d 473 . . . 4  |-  ( t  =  S  ->  (
( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
2827elrab 2959 . . 3  |-  ( S  e.  { t  e. 
~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  e.  ~P ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
29 issubm.b . . . . . . 7  |-  B  =  ( Base `  M
)
3029sseq2i 3251 . . . . . 6  |-  ( S 
C_  B  <->  S  C_  ( Base `  M ) )
31 issubm.z . . . . . . . 8  |-  .0.  =  ( 0g `  M )
3231eleq1i 2295 . . . . . . 7  |-  (  .0. 
e.  S  <->  ( 0g `  M )  e.  S
)
33 issubm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
3433oveqi 6014 . . . . . . . . 9  |-  ( x 
.+  y )  =  ( x ( +g  `  M ) y )
3534eleq1i 2295 . . . . . . . 8  |-  ( ( x  .+  y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
)
36352ralbii 2538 . . . . . . 7  |-  ( A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S )
3732, 36anbi12i 460 . . . . . 6  |-  ( (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
3830, 37anbi12i 460 . . . . 5  |-  ( ( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
3938a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) ) )
40 3anass 1006 . . . . 5  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4140a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) ) )
42 elpw2g 4240 . . . . . 6  |-  ( (
Base `  M )  e.  _V  ->  ( S  e.  ~P ( Base `  M
)  <->  S  C_  ( Base `  M ) ) )
4317, 42syl 14 . . . . 5  |-  ( M  e.  Mnd  ->  ( S  e.  ~P ( Base `  M )  <->  S  C_  ( Base `  M ) ) )
4443anbi1d 465 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) ) )
4539, 41, 443bitr4rd 221 . . 3  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4628, 45bitrid 192 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  { t  e.  ~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
4722, 46bitrd 188 1  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449  SubMndcsubmnd 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-submnd 13493
This theorem is referenced by:  issubm2  13506  issubmd  13507  mndissubm  13508  submss  13509  submid  13510  subm0cl  13511  submcl  13512  0subm  13517  insubm  13518  mhmima  13524  mhmeql  13525  issubg3  13729  issubrg3  14211  cnsubmlem  14542
  Copyright terms: Public domain W3C validator