ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm Unicode version

Theorem issubm 13419
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b  |-  B  =  ( Base `  M
)
issubm.z  |-  .0.  =  ( 0g `  M )
issubm.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
issubm  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Distinct variable groups:    x, M, y   
x, S, y
Allowed substitution hints:    B( x, y)    .+ ( x, y)    .0. ( x, y)

Proof of Theorem issubm
Dummy variables  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13407 . . . 4  |- SubMnd  =  ( m  e.  Mnd  |->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t ) } )
2 fveq2 5599 . . . . . 6  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
32pweqd 3631 . . . . 5  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
4 fveq2 5599 . . . . . . 7  |-  ( m  =  M  ->  ( 0g `  m )  =  ( 0g `  M
) )
54eleq1d 2276 . . . . . 6  |-  ( m  =  M  ->  (
( 0g `  m
)  e.  t  <->  ( 0g `  M )  e.  t ) )
6 fveq2 5599 . . . . . . . . 9  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
76oveqd 5984 . . . . . . . 8  |-  ( m  =  M  ->  (
x ( +g  `  m
) y )  =  ( x ( +g  `  M ) y ) )
87eleq1d 2276 . . . . . . 7  |-  ( m  =  M  ->  (
( x ( +g  `  m ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  t ) )
982ralbidv 2532 . . . . . 6  |-  ( m  =  M  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  m ) y )  e.  t  <->  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) )
105, 9anbi12d 473 . . . . 5  |-  ( m  =  M  ->  (
( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) ) )
113, 10rabeqbidv 2771 . . . 4  |-  ( m  =  M  ->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  m
) y )  e.  t ) }  =  { t  e.  ~P ( Base `  M )  |  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) } )
12 id 19 . . . 4  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
13 basfn 13005 . . . . . . 7  |-  Base  Fn  _V
14 elex 2788 . . . . . . 7  |-  ( M  e.  Mnd  ->  M  e.  _V )
15 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  M  e. 
dom  Base )  ->  ( Base `  M )  e. 
_V )
1615funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  M  e.  _V )  ->  ( Base `  M )  e. 
_V )
1713, 14, 16sylancr 414 . . . . . 6  |-  ( M  e.  Mnd  ->  ( Base `  M )  e. 
_V )
1817pwexd 4241 . . . . 5  |-  ( M  e.  Mnd  ->  ~P ( Base `  M )  e.  _V )
19 rabexg 4203 . . . . 5  |-  ( ~P ( Base `  M
)  e.  _V  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) }  e.  _V )
2018, 19syl 14 . . . 4  |-  ( M  e.  Mnd  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  e.  _V )
211, 11, 12, 20fvmptd3 5696 . . 3  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  =  {
t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) } )
2221eleq2d 2277 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  S  e.  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) } ) )
23 eleq2 2271 . . . . 5  |-  ( t  =  S  ->  (
( 0g `  M
)  e.  t  <->  ( 0g `  M )  e.  S
) )
24 eleq2 2271 . . . . . . 7  |-  ( t  =  S  ->  (
( x ( +g  `  M ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  S
) )
2524raleqbi1dv 2717 . . . . . 6  |-  ( t  =  S  ->  ( A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2625raleqbi1dv 2717 . . . . 5  |-  ( t  =  S  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2723, 26anbi12d 473 . . . 4  |-  ( t  =  S  ->  (
( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
2827elrab 2936 . . 3  |-  ( S  e.  { t  e. 
~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  e.  ~P ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
29 issubm.b . . . . . . 7  |-  B  =  ( Base `  M
)
3029sseq2i 3228 . . . . . 6  |-  ( S 
C_  B  <->  S  C_  ( Base `  M ) )
31 issubm.z . . . . . . . 8  |-  .0.  =  ( 0g `  M )
3231eleq1i 2273 . . . . . . 7  |-  (  .0. 
e.  S  <->  ( 0g `  M )  e.  S
)
33 issubm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
3433oveqi 5980 . . . . . . . . 9  |-  ( x 
.+  y )  =  ( x ( +g  `  M ) y )
3534eleq1i 2273 . . . . . . . 8  |-  ( ( x  .+  y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
)
36352ralbii 2516 . . . . . . 7  |-  ( A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S )
3732, 36anbi12i 460 . . . . . 6  |-  ( (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
3830, 37anbi12i 460 . . . . 5  |-  ( ( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
3938a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) ) )
40 3anass 985 . . . . 5  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4140a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) ) )
42 elpw2g 4216 . . . . . 6  |-  ( (
Base `  M )  e.  _V  ->  ( S  e.  ~P ( Base `  M
)  <->  S  C_  ( Base `  M ) ) )
4317, 42syl 14 . . . . 5  |-  ( M  e.  Mnd  ->  ( S  e.  ~P ( Base `  M )  <->  S  C_  ( Base `  M ) ) )
4443anbi1d 465 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) ) )
4539, 41, 443bitr4rd 221 . . 3  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4628, 45bitrid 192 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  { t  e.  ~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
4722, 46bitrd 188 1  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Mndcmnd 13363  SubMndcsubmnd 13405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-submnd 13407
This theorem is referenced by:  issubm2  13420  issubmd  13421  mndissubm  13422  submss  13423  submid  13424  subm0cl  13425  submcl  13426  0subm  13431  insubm  13432  mhmima  13438  mhmeql  13439  issubg3  13643  issubrg3  14124  cnsubmlem  14455
  Copyright terms: Public domain W3C validator