| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubm | Unicode version | ||
| Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| issubm.b |
|
| issubm.z |
|
| issubm.p |
|
| Ref | Expression |
|---|---|
| issubm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-submnd 13092 |
. . . 4
| |
| 2 | fveq2 5558 |
. . . . . 6
| |
| 3 | 2 | pweqd 3610 |
. . . . 5
|
| 4 | fveq2 5558 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2265 |
. . . . . 6
|
| 6 | fveq2 5558 |
. . . . . . . . 9
| |
| 7 | 6 | oveqd 5939 |
. . . . . . . 8
|
| 8 | 7 | eleq1d 2265 |
. . . . . . 7
|
| 9 | 8 | 2ralbidv 2521 |
. . . . . 6
|
| 10 | 5, 9 | anbi12d 473 |
. . . . 5
|
| 11 | 3, 10 | rabeqbidv 2758 |
. . . 4
|
| 12 | id 19 |
. . . 4
| |
| 13 | basfn 12736 |
. . . . . . 7
| |
| 14 | elex 2774 |
. . . . . . 7
| |
| 15 | funfvex 5575 |
. . . . . . . 8
| |
| 16 | 15 | funfni 5358 |
. . . . . . 7
|
| 17 | 13, 14, 16 | sylancr 414 |
. . . . . 6
|
| 18 | 17 | pwexd 4214 |
. . . . 5
|
| 19 | rabexg 4176 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 1, 11, 12, 20 | fvmptd3 5655 |
. . 3
|
| 22 | 21 | eleq2d 2266 |
. 2
|
| 23 | eleq2 2260 |
. . . . 5
| |
| 24 | eleq2 2260 |
. . . . . . 7
| |
| 25 | 24 | raleqbi1dv 2705 |
. . . . . 6
|
| 26 | 25 | raleqbi1dv 2705 |
. . . . 5
|
| 27 | 23, 26 | anbi12d 473 |
. . . 4
|
| 28 | 27 | elrab 2920 |
. . 3
|
| 29 | issubm.b |
. . . . . . 7
| |
| 30 | 29 | sseq2i 3210 |
. . . . . 6
|
| 31 | issubm.z |
. . . . . . . 8
| |
| 32 | 31 | eleq1i 2262 |
. . . . . . 7
|
| 33 | issubm.p |
. . . . . . . . . 10
| |
| 34 | 33 | oveqi 5935 |
. . . . . . . . 9
|
| 35 | 34 | eleq1i 2262 |
. . . . . . . 8
|
| 36 | 35 | 2ralbii 2505 |
. . . . . . 7
|
| 37 | 32, 36 | anbi12i 460 |
. . . . . 6
|
| 38 | 30, 37 | anbi12i 460 |
. . . . 5
|
| 39 | 38 | a1i 9 |
. . . 4
|
| 40 | 3anass 984 |
. . . . 5
| |
| 41 | 40 | a1i 9 |
. . . 4
|
| 42 | elpw2g 4189 |
. . . . . 6
| |
| 43 | 17, 42 | syl 14 |
. . . . 5
|
| 44 | 43 | anbi1d 465 |
. . . 4
|
| 45 | 39, 41, 44 | 3bitr4rd 221 |
. . 3
|
| 46 | 28, 45 | bitrid 192 |
. 2
|
| 47 | 22, 46 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-submnd 13092 |
| This theorem is referenced by: issubm2 13105 issubmd 13106 mndissubm 13107 submss 13108 submid 13109 subm0cl 13110 submcl 13111 0subm 13116 insubm 13117 mhmima 13123 mhmeql 13124 issubg3 13322 issubrg3 13803 cnsubmlem 14134 |
| Copyright terms: Public domain | W3C validator |