ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm Unicode version

Theorem issubm 12695
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b  |-  B  =  ( Base `  M
)
issubm.z  |-  .0.  =  ( 0g `  M )
issubm.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
issubm  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Distinct variable groups:    x, M, y   
x, S, y
Allowed substitution hints:    B( x, y)    .+ ( x, y)    .0. ( x, y)

Proof of Theorem issubm
Dummy variables  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 12684 . . . 4  |- SubMnd  =  ( m  e.  Mnd  |->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t ) } )
2 fveq2 5496 . . . . . 6  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
32pweqd 3571 . . . . 5  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
4 fveq2 5496 . . . . . . 7  |-  ( m  =  M  ->  ( 0g `  m )  =  ( 0g `  M
) )
54eleq1d 2239 . . . . . 6  |-  ( m  =  M  ->  (
( 0g `  m
)  e.  t  <->  ( 0g `  M )  e.  t ) )
6 fveq2 5496 . . . . . . . . 9  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
76oveqd 5870 . . . . . . . 8  |-  ( m  =  M  ->  (
x ( +g  `  m
) y )  =  ( x ( +g  `  M ) y ) )
87eleq1d 2239 . . . . . . 7  |-  ( m  =  M  ->  (
( x ( +g  `  m ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  t ) )
982ralbidv 2494 . . . . . 6  |-  ( m  =  M  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  m ) y )  e.  t  <->  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) )
105, 9anbi12d 470 . . . . 5  |-  ( m  =  M  ->  (
( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) ) )
113, 10rabeqbidv 2725 . . . 4  |-  ( m  =  M  ->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  m
) y )  e.  t ) }  =  { t  e.  ~P ( Base `  M )  |  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) } )
12 id 19 . . . 4  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
13 basfn 12473 . . . . . . 7  |-  Base  Fn  _V
14 elex 2741 . . . . . . 7  |-  ( M  e.  Mnd  ->  M  e.  _V )
15 funfvex 5513 . . . . . . . 8  |-  ( ( Fun  Base  /\  M  e. 
dom  Base )  ->  ( Base `  M )  e. 
_V )
1615funfni 5298 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  M  e.  _V )  ->  ( Base `  M )  e. 
_V )
1713, 14, 16sylancr 412 . . . . . 6  |-  ( M  e.  Mnd  ->  ( Base `  M )  e. 
_V )
1817pwexd 4167 . . . . 5  |-  ( M  e.  Mnd  ->  ~P ( Base `  M )  e.  _V )
19 rabexg 4132 . . . . 5  |-  ( ~P ( Base `  M
)  e.  _V  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) }  e.  _V )
2018, 19syl 14 . . . 4  |-  ( M  e.  Mnd  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  e.  _V )
211, 11, 12, 20fvmptd3 5589 . . 3  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  =  {
t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) } )
2221eleq2d 2240 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  S  e.  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) } ) )
23 eleq2 2234 . . . . 5  |-  ( t  =  S  ->  (
( 0g `  M
)  e.  t  <->  ( 0g `  M )  e.  S
) )
24 eleq2 2234 . . . . . . 7  |-  ( t  =  S  ->  (
( x ( +g  `  M ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  S
) )
2524raleqbi1dv 2673 . . . . . 6  |-  ( t  =  S  ->  ( A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2625raleqbi1dv 2673 . . . . 5  |-  ( t  =  S  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2723, 26anbi12d 470 . . . 4  |-  ( t  =  S  ->  (
( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
2827elrab 2886 . . 3  |-  ( S  e.  { t  e. 
~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  e.  ~P ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
29 issubm.b . . . . . . 7  |-  B  =  ( Base `  M
)
3029sseq2i 3174 . . . . . 6  |-  ( S 
C_  B  <->  S  C_  ( Base `  M ) )
31 issubm.z . . . . . . . 8  |-  .0.  =  ( 0g `  M )
3231eleq1i 2236 . . . . . . 7  |-  (  .0. 
e.  S  <->  ( 0g `  M )  e.  S
)
33 issubm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
3433oveqi 5866 . . . . . . . . 9  |-  ( x 
.+  y )  =  ( x ( +g  `  M ) y )
3534eleq1i 2236 . . . . . . . 8  |-  ( ( x  .+  y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
)
36352ralbii 2478 . . . . . . 7  |-  ( A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S )
3732, 36anbi12i 457 . . . . . 6  |-  ( (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
3830, 37anbi12i 457 . . . . 5  |-  ( ( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
3938a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) ) )
40 3anass 977 . . . . 5  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4140a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) ) )
42 elpw2g 4142 . . . . . 6  |-  ( (
Base `  M )  e.  _V  ->  ( S  e.  ~P ( Base `  M
)  <->  S  C_  ( Base `  M ) ) )
4317, 42syl 14 . . . . 5  |-  ( M  e.  Mnd  ->  ( S  e.  ~P ( Base `  M )  <->  S  C_  ( Base `  M ) ) )
4443anbi1d 462 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) ) )
4539, 41, 443bitr4rd 220 . . 3  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4628, 45syl5bb 191 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  { t  e.  ~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
4722, 46bitrd 187 1  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566    Fn wfn 5193   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   Mndcmnd 12652  SubMndcsubmnd 12682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-submnd 12684
This theorem is referenced by:  issubmd  12696  mndissubm  12697  submss  12698  submid  12699  subm0cl  12700  submcl  12701  0subm  12702  insubm  12703  mhmima  12706  mhmeql  12707
  Copyright terms: Public domain W3C validator