ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm Unicode version

Theorem issubm 13047
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b  |-  B  =  ( Base `  M
)
issubm.z  |-  .0.  =  ( 0g `  M )
issubm.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
issubm  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Distinct variable groups:    x, M, y   
x, S, y
Allowed substitution hints:    B( x, y)    .+ ( x, y)    .0. ( x, y)

Proof of Theorem issubm
Dummy variables  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 13035 . . . 4  |- SubMnd  =  ( m  e.  Mnd  |->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t ) } )
2 fveq2 5555 . . . . . 6  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
32pweqd 3607 . . . . 5  |-  ( m  =  M  ->  ~P ( Base `  m )  =  ~P ( Base `  M
) )
4 fveq2 5555 . . . . . . 7  |-  ( m  =  M  ->  ( 0g `  m )  =  ( 0g `  M
) )
54eleq1d 2262 . . . . . 6  |-  ( m  =  M  ->  (
( 0g `  m
)  e.  t  <->  ( 0g `  M )  e.  t ) )
6 fveq2 5555 . . . . . . . . 9  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
76oveqd 5936 . . . . . . . 8  |-  ( m  =  M  ->  (
x ( +g  `  m
) y )  =  ( x ( +g  `  M ) y ) )
87eleq1d 2262 . . . . . . 7  |-  ( m  =  M  ->  (
( x ( +g  `  m ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  t ) )
982ralbidv 2518 . . . . . 6  |-  ( m  =  M  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  m ) y )  e.  t  <->  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) )
105, 9anbi12d 473 . . . . 5  |-  ( m  =  M  ->  (
( ( 0g `  m )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  m ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) ) )
113, 10rabeqbidv 2755 . . . 4  |-  ( m  =  M  ->  { t  e.  ~P ( Base `  m )  |  ( ( 0g `  m
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  m
) y )  e.  t ) }  =  { t  e.  ~P ( Base `  M )  |  ( ( 0g
`  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x
( +g  `  M ) y )  e.  t ) } )
12 id 19 . . . 4  |-  ( M  e.  Mnd  ->  M  e.  Mnd )
13 basfn 12679 . . . . . . 7  |-  Base  Fn  _V
14 elex 2771 . . . . . . 7  |-  ( M  e.  Mnd  ->  M  e.  _V )
15 funfvex 5572 . . . . . . . 8  |-  ( ( Fun  Base  /\  M  e. 
dom  Base )  ->  ( Base `  M )  e. 
_V )
1615funfni 5355 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  M  e.  _V )  ->  ( Base `  M )  e. 
_V )
1713, 14, 16sylancr 414 . . . . . 6  |-  ( M  e.  Mnd  ->  ( Base `  M )  e. 
_V )
1817pwexd 4211 . . . . 5  |-  ( M  e.  Mnd  ->  ~P ( Base `  M )  e.  _V )
19 rabexg 4173 . . . . 5  |-  ( ~P ( Base `  M
)  e.  _V  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) }  e.  _V )
2018, 19syl 14 . . . 4  |-  ( M  e.  Mnd  ->  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  e.  _V )
211, 11, 12, 20fvmptd3 5652 . . 3  |-  ( M  e.  Mnd  ->  (SubMnd `  M )  =  {
t  e.  ~P ( Base `  M )  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t ) } )
2221eleq2d 2263 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  S  e.  { t  e.  ~P ( Base `  M )  |  ( ( 0g `  M
)  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) } ) )
23 eleq2 2257 . . . . 5  |-  ( t  =  S  ->  (
( 0g `  M
)  e.  t  <->  ( 0g `  M )  e.  S
) )
24 eleq2 2257 . . . . . . 7  |-  ( t  =  S  ->  (
( x ( +g  `  M ) y )  e.  t  <->  ( x
( +g  `  M ) y )  e.  S
) )
2524raleqbi1dv 2702 . . . . . 6  |-  ( t  =  S  ->  ( A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2625raleqbi1dv 2702 . . . . 5  |-  ( t  =  S  ->  ( A. x  e.  t  A. y  e.  t 
( x ( +g  `  M ) y )  e.  t  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2723, 26anbi12d 473 . . . 4  |-  ( t  =  S  ->  (
( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  M ) y )  e.  t )  <->  ( ( 0g
`  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
2827elrab 2917 . . 3  |-  ( S  e.  { t  e. 
~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  e.  ~P ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
29 issubm.b . . . . . . 7  |-  B  =  ( Base `  M
)
3029sseq2i 3207 . . . . . 6  |-  ( S 
C_  B  <->  S  C_  ( Base `  M ) )
31 issubm.z . . . . . . . 8  |-  .0.  =  ( 0g `  M )
3231eleq1i 2259 . . . . . . 7  |-  (  .0. 
e.  S  <->  ( 0g `  M )  e.  S
)
33 issubm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  M )
3433oveqi 5932 . . . . . . . . 9  |-  ( x 
.+  y )  =  ( x ( +g  `  M ) y )
3534eleq1i 2259 . . . . . . . 8  |-  ( ( x  .+  y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
)
36352ralbii 2502 . . . . . . 7  |-  ( A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S )
3732, 36anbi12i 460 . . . . . 6  |-  ( (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
3830, 37anbi12i 460 . . . . 5  |-  ( ( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) )
3938a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  (  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )  <->  ( S  C_  ( Base `  M
)  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) ) ) )
40 3anass 984 . . . . 5  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4140a1i 9 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  <->  ( S  C_  B  /\  (  .0. 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) ) )
42 elpw2g 4186 . . . . . 6  |-  ( (
Base `  M )  e.  _V  ->  ( S  e.  ~P ( Base `  M
)  <->  S  C_  ( Base `  M ) ) )
4317, 42syl 14 . . . . 5  |-  ( M  e.  Mnd  ->  ( S  e.  ~P ( Base `  M )  <->  S  C_  ( Base `  M ) ) )
4443anbi1d 465 . . . 4  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) ) )
4539, 41, 443bitr4rd 221 . . 3  |-  ( M  e.  Mnd  ->  (
( S  e.  ~P ( Base `  M )  /\  ( ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) )  <-> 
( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
4628, 45bitrid 192 . 2  |-  ( M  e.  Mnd  ->  ( S  e.  { t  e.  ~P ( Base `  M
)  |  ( ( 0g `  M )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  M
) y )  e.  t ) }  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
4722, 46bitrd 188 1  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Mndcmnd 13000  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-submnd 13035
This theorem is referenced by:  issubm2  13048  issubmd  13049  mndissubm  13050  submss  13051  submid  13052  subm0cl  13053  submcl  13054  0subm  13059  insubm  13060  mhmima  13066  mhmeql  13067  issubg3  13265  issubrg3  13746  cnsubmlem  14077
  Copyright terms: Public domain W3C validator