Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issubm | Unicode version |
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
issubm.b | |
issubm.z | |
issubm.p |
Ref | Expression |
---|---|
issubm | SubMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submnd 12684 | . . . 4 SubMnd | |
2 | fveq2 5496 | . . . . . 6 | |
3 | 2 | pweqd 3571 | . . . . 5 |
4 | fveq2 5496 | . . . . . . 7 | |
5 | 4 | eleq1d 2239 | . . . . . 6 |
6 | fveq2 5496 | . . . . . . . . 9 | |
7 | 6 | oveqd 5870 | . . . . . . . 8 |
8 | 7 | eleq1d 2239 | . . . . . . 7 |
9 | 8 | 2ralbidv 2494 | . . . . . 6 |
10 | 5, 9 | anbi12d 470 | . . . . 5 |
11 | 3, 10 | rabeqbidv 2725 | . . . 4 |
12 | id 19 | . . . 4 | |
13 | basfn 12473 | . . . . . . 7 | |
14 | elex 2741 | . . . . . . 7 | |
15 | funfvex 5513 | . . . . . . . 8 | |
16 | 15 | funfni 5298 | . . . . . . 7 |
17 | 13, 14, 16 | sylancr 412 | . . . . . 6 |
18 | 17 | pwexd 4167 | . . . . 5 |
19 | rabexg 4132 | . . . . 5 | |
20 | 18, 19 | syl 14 | . . . 4 |
21 | 1, 11, 12, 20 | fvmptd3 5589 | . . 3 SubMnd |
22 | 21 | eleq2d 2240 | . 2 SubMnd |
23 | eleq2 2234 | . . . . 5 | |
24 | eleq2 2234 | . . . . . . 7 | |
25 | 24 | raleqbi1dv 2673 | . . . . . 6 |
26 | 25 | raleqbi1dv 2673 | . . . . 5 |
27 | 23, 26 | anbi12d 470 | . . . 4 |
28 | 27 | elrab 2886 | . . 3 |
29 | issubm.b | . . . . . . 7 | |
30 | 29 | sseq2i 3174 | . . . . . 6 |
31 | issubm.z | . . . . . . . 8 | |
32 | 31 | eleq1i 2236 | . . . . . . 7 |
33 | issubm.p | . . . . . . . . . 10 | |
34 | 33 | oveqi 5866 | . . . . . . . . 9 |
35 | 34 | eleq1i 2236 | . . . . . . . 8 |
36 | 35 | 2ralbii 2478 | . . . . . . 7 |
37 | 32, 36 | anbi12i 457 | . . . . . 6 |
38 | 30, 37 | anbi12i 457 | . . . . 5 |
39 | 38 | a1i 9 | . . . 4 |
40 | 3anass 977 | . . . . 5 | |
41 | 40 | a1i 9 | . . . 4 |
42 | elpw2g 4142 | . . . . . 6 | |
43 | 17, 42 | syl 14 | . . . . 5 |
44 | 43 | anbi1d 462 | . . . 4 |
45 | 39, 41, 44 | 3bitr4rd 220 | . . 3 |
46 | 28, 45 | syl5bb 191 | . 2 |
47 | 22, 46 | bitrd 187 | 1 SubMnd |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 cpw 3566 wfn 5193 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 SubMndcsubmnd 12682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 df-submnd 12684 |
This theorem is referenced by: issubmd 12696 mndissubm 12697 submss 12698 submid 12699 subm0cl 12700 submcl 12701 0subm 12702 insubm 12703 mhmima 12706 mhmeql 12707 |
Copyright terms: Public domain | W3C validator |