| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubm | Unicode version | ||
| Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| issubm.b |
|
| issubm.z |
|
| issubm.p |
|
| Ref | Expression |
|---|---|
| issubm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-submnd 13325 |
. . . 4
| |
| 2 | fveq2 5578 |
. . . . . 6
| |
| 3 | 2 | pweqd 3621 |
. . . . 5
|
| 4 | fveq2 5578 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2274 |
. . . . . 6
|
| 6 | fveq2 5578 |
. . . . . . . . 9
| |
| 7 | 6 | oveqd 5963 |
. . . . . . . 8
|
| 8 | 7 | eleq1d 2274 |
. . . . . . 7
|
| 9 | 8 | 2ralbidv 2530 |
. . . . . 6
|
| 10 | 5, 9 | anbi12d 473 |
. . . . 5
|
| 11 | 3, 10 | rabeqbidv 2767 |
. . . 4
|
| 12 | id 19 |
. . . 4
| |
| 13 | basfn 12923 |
. . . . . . 7
| |
| 14 | elex 2783 |
. . . . . . 7
| |
| 15 | funfvex 5595 |
. . . . . . . 8
| |
| 16 | 15 | funfni 5377 |
. . . . . . 7
|
| 17 | 13, 14, 16 | sylancr 414 |
. . . . . 6
|
| 18 | 17 | pwexd 4226 |
. . . . 5
|
| 19 | rabexg 4188 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | 1, 11, 12, 20 | fvmptd3 5675 |
. . 3
|
| 22 | 21 | eleq2d 2275 |
. 2
|
| 23 | eleq2 2269 |
. . . . 5
| |
| 24 | eleq2 2269 |
. . . . . . 7
| |
| 25 | 24 | raleqbi1dv 2714 |
. . . . . 6
|
| 26 | 25 | raleqbi1dv 2714 |
. . . . 5
|
| 27 | 23, 26 | anbi12d 473 |
. . . 4
|
| 28 | 27 | elrab 2929 |
. . 3
|
| 29 | issubm.b |
. . . . . . 7
| |
| 30 | 29 | sseq2i 3220 |
. . . . . 6
|
| 31 | issubm.z |
. . . . . . . 8
| |
| 32 | 31 | eleq1i 2271 |
. . . . . . 7
|
| 33 | issubm.p |
. . . . . . . . . 10
| |
| 34 | 33 | oveqi 5959 |
. . . . . . . . 9
|
| 35 | 34 | eleq1i 2271 |
. . . . . . . 8
|
| 36 | 35 | 2ralbii 2514 |
. . . . . . 7
|
| 37 | 32, 36 | anbi12i 460 |
. . . . . 6
|
| 38 | 30, 37 | anbi12i 460 |
. . . . 5
|
| 39 | 38 | a1i 9 |
. . . 4
|
| 40 | 3anass 985 |
. . . . 5
| |
| 41 | 40 | a1i 9 |
. . . 4
|
| 42 | elpw2g 4201 |
. . . . . 6
| |
| 43 | 17, 42 | syl 14 |
. . . . 5
|
| 44 | 43 | anbi1d 465 |
. . . 4
|
| 45 | 39, 41, 44 | 3bitr4rd 221 |
. . 3
|
| 46 | 28, 45 | bitrid 192 |
. 2
|
| 47 | 22, 46 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-ov 5949 df-inn 9039 df-ndx 12868 df-slot 12869 df-base 12871 df-submnd 13325 |
| This theorem is referenced by: issubm2 13338 issubmd 13339 mndissubm 13340 submss 13341 submid 13342 subm0cl 13343 submcl 13344 0subm 13349 insubm 13350 mhmima 13356 mhmeql 13357 issubg3 13561 issubrg3 14042 cnsubmlem 14373 |
| Copyright terms: Public domain | W3C validator |