Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issubm | Unicode version |
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
issubm.b | |
issubm.z | |
issubm.p |
Ref | Expression |
---|---|
issubm | SubMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submnd 12715 | . . . 4 SubMnd | |
2 | fveq2 5507 | . . . . . 6 | |
3 | 2 | pweqd 3577 | . . . . 5 |
4 | fveq2 5507 | . . . . . . 7 | |
5 | 4 | eleq1d 2244 | . . . . . 6 |
6 | fveq2 5507 | . . . . . . . . 9 | |
7 | 6 | oveqd 5882 | . . . . . . . 8 |
8 | 7 | eleq1d 2244 | . . . . . . 7 |
9 | 8 | 2ralbidv 2499 | . . . . . 6 |
10 | 5, 9 | anbi12d 473 | . . . . 5 |
11 | 3, 10 | rabeqbidv 2730 | . . . 4 |
12 | id 19 | . . . 4 | |
13 | basfn 12486 | . . . . . . 7 | |
14 | elex 2746 | . . . . . . 7 | |
15 | funfvex 5524 | . . . . . . . 8 | |
16 | 15 | funfni 5308 | . . . . . . 7 |
17 | 13, 14, 16 | sylancr 414 | . . . . . 6 |
18 | 17 | pwexd 4176 | . . . . 5 |
19 | rabexg 4141 | . . . . 5 | |
20 | 18, 19 | syl 14 | . . . 4 |
21 | 1, 11, 12, 20 | fvmptd3 5601 | . . 3 SubMnd |
22 | 21 | eleq2d 2245 | . 2 SubMnd |
23 | eleq2 2239 | . . . . 5 | |
24 | eleq2 2239 | . . . . . . 7 | |
25 | 24 | raleqbi1dv 2678 | . . . . . 6 |
26 | 25 | raleqbi1dv 2678 | . . . . 5 |
27 | 23, 26 | anbi12d 473 | . . . 4 |
28 | 27 | elrab 2891 | . . 3 |
29 | issubm.b | . . . . . . 7 | |
30 | 29 | sseq2i 3180 | . . . . . 6 |
31 | issubm.z | . . . . . . . 8 | |
32 | 31 | eleq1i 2241 | . . . . . . 7 |
33 | issubm.p | . . . . . . . . . 10 | |
34 | 33 | oveqi 5878 | . . . . . . . . 9 |
35 | 34 | eleq1i 2241 | . . . . . . . 8 |
36 | 35 | 2ralbii 2483 | . . . . . . 7 |
37 | 32, 36 | anbi12i 460 | . . . . . 6 |
38 | 30, 37 | anbi12i 460 | . . . . 5 |
39 | 38 | a1i 9 | . . . 4 |
40 | 3anass 982 | . . . . 5 | |
41 | 40 | a1i 9 | . . . 4 |
42 | elpw2g 4151 | . . . . . 6 | |
43 | 17, 42 | syl 14 | . . . . 5 |
44 | 43 | anbi1d 465 | . . . 4 |
45 | 39, 41, 44 | 3bitr4rd 221 | . . 3 |
46 | 28, 45 | bitrid 192 | . 2 |
47 | 22, 46 | bitrd 188 | 1 SubMnd |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 crab 2457 cvv 2735 wss 3127 cpw 3572 wfn 5203 cfv 5208 (class class class)co 5865 cbs 12429 cplusg 12493 c0g 12627 cmnd 12683 SubMndcsubmnd 12713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8893 df-ndx 12432 df-slot 12433 df-base 12435 df-submnd 12715 |
This theorem is referenced by: issubmd 12727 mndissubm 12728 submss 12729 submid 12730 subm0cl 12731 submcl 12732 0subm 12733 insubm 12734 mhmima 12737 mhmeql 12738 |
Copyright terms: Public domain | W3C validator |