| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isbasis2g | Unicode version | ||
| Description: Express the predicate
"the set |
| Ref | Expression |
|---|---|
| isbasis2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisg 14712 |
. 2
| |
| 2 | dfss3 3213 |
. . . 4
| |
| 3 | elin 3387 |
. . . . . . . . . 10
| |
| 4 | velpw 3656 |
. . . . . . . . . . 11
| |
| 5 | 4 | anbi2i 457 |
. . . . . . . . . 10
|
| 6 | 3, 5 | bitri 184 |
. . . . . . . . 9
|
| 7 | 6 | anbi2i 457 |
. . . . . . . 8
|
| 8 | an12 561 |
. . . . . . . 8
| |
| 9 | 7, 8 | bitri 184 |
. . . . . . 7
|
| 10 | 9 | exbii 1651 |
. . . . . 6
|
| 11 | eluni 3890 |
. . . . . 6
| |
| 12 | df-rex 2514 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . . 5
|
| 14 | 13 | ralbii 2536 |
. . . 4
|
| 15 | 2, 14 | bitri 184 |
. . 3
|
| 16 | 15 | 2ralbii 2538 |
. 2
|
| 17 | 1, 16 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3888 df-bases 14711 |
| This theorem is referenced by: isbasis3g 14714 basis2 14716 fiinbas 14717 tgclb 14733 topbas 14735 restbasg 14836 txbas 14926 blbas 15101 |
| Copyright terms: Public domain | W3C validator |