Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbasis2g | Unicode version |
Description: Express the predicate "the set is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasis2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisg 13113 | . 2 | |
2 | dfss3 3143 | . . . 4 | |
3 | elin 3316 | . . . . . . . . . 10 | |
4 | velpw 3579 | . . . . . . . . . . 11 | |
5 | 4 | anbi2i 457 | . . . . . . . . . 10 |
6 | 3, 5 | bitri 184 | . . . . . . . . 9 |
7 | 6 | anbi2i 457 | . . . . . . . 8 |
8 | an12 561 | . . . . . . . 8 | |
9 | 7, 8 | bitri 184 | . . . . . . 7 |
10 | 9 | exbii 1603 | . . . . . 6 |
11 | eluni 3808 | . . . . . 6 | |
12 | df-rex 2459 | . . . . . 6 | |
13 | 10, 11, 12 | 3bitr4i 212 | . . . . 5 |
14 | 13 | ralbii 2481 | . . . 4 |
15 | 2, 14 | bitri 184 | . . 3 |
16 | 15 | 2ralbii 2483 | . 2 |
17 | 1, 16 | bitrdi 196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wex 1490 wcel 2146 wral 2453 wrex 2454 cin 3126 wss 3127 cpw 3572 cuni 3805 ctb 13111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-uni 3806 df-bases 13112 |
This theorem is referenced by: isbasis3g 13115 basis2 13117 fiinbas 13118 tgclb 13136 topbas 13138 restbasg 13239 txbas 13329 blbas 13504 |
Copyright terms: Public domain | W3C validator |