| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isbasis2g | Unicode version | ||
| Description: Express the predicate
"the set |
| Ref | Expression |
|---|---|
| isbasis2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisg 14364 |
. 2
| |
| 2 | dfss3 3173 |
. . . 4
| |
| 3 | elin 3347 |
. . . . . . . . . 10
| |
| 4 | velpw 3613 |
. . . . . . . . . . 11
| |
| 5 | 4 | anbi2i 457 |
. . . . . . . . . 10
|
| 6 | 3, 5 | bitri 184 |
. . . . . . . . 9
|
| 7 | 6 | anbi2i 457 |
. . . . . . . 8
|
| 8 | an12 561 |
. . . . . . . 8
| |
| 9 | 7, 8 | bitri 184 |
. . . . . . 7
|
| 10 | 9 | exbii 1619 |
. . . . . 6
|
| 11 | eluni 3843 |
. . . . . 6
| |
| 12 | df-rex 2481 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3bitr4i 212 |
. . . . 5
|
| 14 | 13 | ralbii 2503 |
. . . 4
|
| 15 | 2, 14 | bitri 184 |
. . 3
|
| 16 | 15 | 2ralbii 2505 |
. 2
|
| 17 | 1, 16 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-uni 3841 df-bases 14363 |
| This theorem is referenced by: isbasis3g 14366 basis2 14368 fiinbas 14369 tgclb 14385 topbas 14387 restbasg 14488 txbas 14578 blbas 14753 |
| Copyright terms: Public domain | W3C validator |