Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbasis2g | Unicode version |
Description: Express the predicate "the set is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasis2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisg 12682 | . 2 | |
2 | dfss3 3132 | . . . 4 | |
3 | elin 3305 | . . . . . . . . . 10 | |
4 | velpw 3566 | . . . . . . . . . . 11 | |
5 | 4 | anbi2i 453 | . . . . . . . . . 10 |
6 | 3, 5 | bitri 183 | . . . . . . . . 9 |
7 | 6 | anbi2i 453 | . . . . . . . 8 |
8 | an12 551 | . . . . . . . 8 | |
9 | 7, 8 | bitri 183 | . . . . . . 7 |
10 | 9 | exbii 1593 | . . . . . 6 |
11 | eluni 3792 | . . . . . 6 | |
12 | df-rex 2450 | . . . . . 6 | |
13 | 10, 11, 12 | 3bitr4i 211 | . . . . 5 |
14 | 13 | ralbii 2472 | . . . 4 |
15 | 2, 14 | bitri 183 | . . 3 |
16 | 15 | 2ralbii 2474 | . 2 |
17 | 1, 16 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 cpw 3559 cuni 3789 ctb 12680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 df-bases 12681 |
This theorem is referenced by: isbasis3g 12684 basis2 12686 fiinbas 12687 tgclb 12705 topbas 12707 restbasg 12808 txbas 12898 blbas 13073 |
Copyright terms: Public domain | W3C validator |