Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbasis2g | Unicode version |
Description: Express the predicate "the set is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
isbasis2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbasisg 12836 | . 2 | |
2 | dfss3 3137 | . . . 4 | |
3 | elin 3310 | . . . . . . . . . 10 | |
4 | velpw 3573 | . . . . . . . . . . 11 | |
5 | 4 | anbi2i 454 | . . . . . . . . . 10 |
6 | 3, 5 | bitri 183 | . . . . . . . . 9 |
7 | 6 | anbi2i 454 | . . . . . . . 8 |
8 | an12 556 | . . . . . . . 8 | |
9 | 7, 8 | bitri 183 | . . . . . . 7 |
10 | 9 | exbii 1598 | . . . . . 6 |
11 | eluni 3799 | . . . . . 6 | |
12 | df-rex 2454 | . . . . . 6 | |
13 | 10, 11, 12 | 3bitr4i 211 | . . . . 5 |
14 | 13 | ralbii 2476 | . . . 4 |
15 | 2, 14 | bitri 183 | . . 3 |
16 | 15 | 2ralbii 2478 | . 2 |
17 | 1, 16 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1485 wcel 2141 wral 2448 wrex 2449 cin 3120 wss 3121 cpw 3566 cuni 3796 ctb 12834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 df-bases 12835 |
This theorem is referenced by: isbasis3g 12838 basis2 12840 fiinbas 12841 tgclb 12859 topbas 12861 restbasg 12962 txbas 13052 blbas 13227 |
Copyright terms: Public domain | W3C validator |