| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isbasis2g | Unicode version | ||
| Description: Express the predicate
"the set  | 
| Ref | Expression | 
|---|---|
| isbasis2g | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isbasisg 14280 | 
. 2
 | |
| 2 | dfss3 3173 | 
. . . 4
 | |
| 3 | elin 3346 | 
. . . . . . . . . 10
 | |
| 4 | velpw 3612 | 
. . . . . . . . . . 11
 | |
| 5 | 4 | anbi2i 457 | 
. . . . . . . . . 10
 | 
| 6 | 3, 5 | bitri 184 | 
. . . . . . . . 9
 | 
| 7 | 6 | anbi2i 457 | 
. . . . . . . 8
 | 
| 8 | an12 561 | 
. . . . . . . 8
 | |
| 9 | 7, 8 | bitri 184 | 
. . . . . . 7
 | 
| 10 | 9 | exbii 1619 | 
. . . . . 6
 | 
| 11 | eluni 3842 | 
. . . . . 6
 | |
| 12 | df-rex 2481 | 
. . . . . 6
 | |
| 13 | 10, 11, 12 | 3bitr4i 212 | 
. . . . 5
 | 
| 14 | 13 | ralbii 2503 | 
. . . 4
 | 
| 15 | 2, 14 | bitri 184 | 
. . 3
 | 
| 16 | 15 | 2ralbii 2505 | 
. 2
 | 
| 17 | 1, 16 | bitrdi 196 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 df-bases 14279 | 
| This theorem is referenced by: isbasis3g 14282 basis2 14284 fiinbas 14285 tgclb 14301 topbas 14303 restbasg 14404 txbas 14494 blbas 14669 | 
| Copyright terms: Public domain | W3C validator |