ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsom Unicode version

Theorem cnvsom 5090
Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
cnvsom  |-  ( E. x  x  e.  A  ->  ( R  Or  A  <->  `' R  Or  A ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem cnvsom
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpom 5089 . . 3  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
2 vex 2692 . . . . . . . . 9  |-  y  e. 
_V
3 vex 2692 . . . . . . . . 9  |-  x  e. 
_V
42, 3brcnv 4730 . . . . . . . 8  |-  ( y `' R x  <->  x R
y )
5 vex 2692 . . . . . . . . . . 11  |-  z  e. 
_V
62, 5brcnv 4730 . . . . . . . . . 10  |-  ( y `' R z  <->  z R
y )
75, 3brcnv 4730 . . . . . . . . . 10  |-  ( z `' R x  <->  x R
z )
86, 7orbi12i 754 . . . . . . . . 9  |-  ( ( y `' R z  \/  z `' R x )  <->  ( z R y  \/  x R z ) )
9 orcom 718 . . . . . . . . 9  |-  ( ( z R y  \/  x R z )  <-> 
( x R z  \/  z R y ) )
108, 9bitri 183 . . . . . . . 8  |-  ( ( y `' R z  \/  z `' R x )  <->  ( x R z  \/  z R y ) )
114, 10imbi12i 238 . . . . . . 7  |-  ( ( y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <-> 
( x R y  ->  ( x R z  \/  z R y ) ) )
1211ralbii 2444 . . . . . 6  |-  ( A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <->  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
13122ralbii 2446 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
14 ralcom 2597 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  ( y `' R z  \/  z `' R x ) ) )
1513, 14bitr3i 185 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  (
y `' R z  \/  z `' R x ) ) )
1615a1i 9 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  ( y `' R z  \/  z `' R x ) ) ) )
171, 16anbi12d 465 . 2  |-  ( E. x  x  e.  A  ->  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )  <->  ( `' R  Po  A  /\  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  (
y `' R z  \/  z `' R x ) ) ) ) )
18 df-iso 4227 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
19 df-iso 4227 . 2  |-  ( `' R  Or  A  <->  ( `' R  Po  A  /\  A. y  e.  A  A. x  e.  A  A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) ) ) )
2017, 18, 193bitr4g 222 1  |-  ( E. x  x  e.  A  ->  ( R  Or  A  <->  `' R  Or  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   E.wex 1469    e. wcel 1481   A.wral 2417   class class class wbr 3937    Po wpo 4224    Or wor 4225   `'ccnv 4546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-po 4226  df-iso 4227  df-cnv 4555
This theorem is referenced by:  gtso  7867
  Copyright terms: Public domain W3C validator