Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvsom | Unicode version |
Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.) |
Ref | Expression |
---|---|
cnvsom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvpom 5146 | . . 3 | |
2 | vex 2729 | . . . . . . . . 9 | |
3 | vex 2729 | . . . . . . . . 9 | |
4 | 2, 3 | brcnv 4787 | . . . . . . . 8 |
5 | vex 2729 | . . . . . . . . . . 11 | |
6 | 2, 5 | brcnv 4787 | . . . . . . . . . 10 |
7 | 5, 3 | brcnv 4787 | . . . . . . . . . 10 |
8 | 6, 7 | orbi12i 754 | . . . . . . . . 9 |
9 | orcom 718 | . . . . . . . . 9 | |
10 | 8, 9 | bitri 183 | . . . . . . . 8 |
11 | 4, 10 | imbi12i 238 | . . . . . . 7 |
12 | 11 | ralbii 2472 | . . . . . 6 |
13 | 12 | 2ralbii 2474 | . . . . 5 |
14 | ralcom 2629 | . . . . 5 | |
15 | 13, 14 | bitr3i 185 | . . . 4 |
16 | 15 | a1i 9 | . . 3 |
17 | 1, 16 | anbi12d 465 | . 2 |
18 | df-iso 4275 | . 2 | |
19 | df-iso 4275 | . 2 | |
20 | 17, 18, 19 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wex 1480 wcel 2136 wral 2444 class class class wbr 3982 wpo 4272 wor 4273 ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-po 4274 df-iso 4275 df-cnv 4612 |
This theorem is referenced by: gtso 7977 |
Copyright terms: Public domain | W3C validator |