ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsom Unicode version

Theorem cnvsom 5174
Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
cnvsom  |-  ( E. x  x  e.  A  ->  ( R  Or  A  <->  `' R  Or  A ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem cnvsom
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvpom 5173 . . 3  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
2 vex 2742 . . . . . . . . 9  |-  y  e. 
_V
3 vex 2742 . . . . . . . . 9  |-  x  e. 
_V
42, 3brcnv 4812 . . . . . . . 8  |-  ( y `' R x  <->  x R
y )
5 vex 2742 . . . . . . . . . . 11  |-  z  e. 
_V
62, 5brcnv 4812 . . . . . . . . . 10  |-  ( y `' R z  <->  z R
y )
75, 3brcnv 4812 . . . . . . . . . 10  |-  ( z `' R x  <->  x R
z )
86, 7orbi12i 764 . . . . . . . . 9  |-  ( ( y `' R z  \/  z `' R x )  <->  ( z R y  \/  x R z ) )
9 orcom 728 . . . . . . . . 9  |-  ( ( z R y  \/  x R z )  <-> 
( x R z  \/  z R y ) )
108, 9bitri 184 . . . . . . . 8  |-  ( ( y `' R z  \/  z `' R x )  <->  ( x R z  \/  z R y ) )
114, 10imbi12i 239 . . . . . . 7  |-  ( ( y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <-> 
( x R y  ->  ( x R z  \/  z R y ) ) )
1211ralbii 2483 . . . . . 6  |-  ( A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <->  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
13122ralbii 2485 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
14 ralcom 2640 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  ( y `' R z  \/  z `' R x ) ) )
1513, 14bitr3i 186 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  (
y `' R z  \/  z `' R x ) ) )
1615a1i 9 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  <->  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  ( y `' R z  \/  z `' R x ) ) ) )
171, 16anbi12d 473 . 2  |-  ( E. x  x  e.  A  ->  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )  <->  ( `' R  Po  A  /\  A. y  e.  A  A. x  e.  A  A. z  e.  A  ( y `' R x  ->  (
y `' R z  \/  z `' R x ) ) ) ) )
18 df-iso 4299 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
19 df-iso 4299 . 2  |-  ( `' R  Or  A  <->  ( `' R  Po  A  /\  A. y  e.  A  A. x  e.  A  A. z  e.  A  (
y `' R x  ->  ( y `' R z  \/  z `' R x ) ) ) )
2017, 18, 193bitr4g 223 1  |-  ( E. x  x  e.  A  ->  ( R  Or  A  <->  `' R  Or  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708   E.wex 1492    e. wcel 2148   A.wral 2455   class class class wbr 4005    Po wpo 4296    Or wor 4297   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-po 4298  df-iso 4299  df-cnv 4636
This theorem is referenced by:  gtso  8038
  Copyright terms: Public domain W3C validator