| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvsom | Unicode version | ||
| Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnvsom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvpom 5213 |
. . 3
| |
| 2 | vex 2766 |
. . . . . . . . 9
| |
| 3 | vex 2766 |
. . . . . . . . 9
| |
| 4 | 2, 3 | brcnv 4850 |
. . . . . . . 8
|
| 5 | vex 2766 |
. . . . . . . . . . 11
| |
| 6 | 2, 5 | brcnv 4850 |
. . . . . . . . . 10
|
| 7 | 5, 3 | brcnv 4850 |
. . . . . . . . . 10
|
| 8 | 6, 7 | orbi12i 765 |
. . . . . . . . 9
|
| 9 | orcom 729 |
. . . . . . . . 9
| |
| 10 | 8, 9 | bitri 184 |
. . . . . . . 8
|
| 11 | 4, 10 | imbi12i 239 |
. . . . . . 7
|
| 12 | 11 | ralbii 2503 |
. . . . . 6
|
| 13 | 12 | 2ralbii 2505 |
. . . . 5
|
| 14 | ralcom 2660 |
. . . . 5
| |
| 15 | 13, 14 | bitr3i 186 |
. . . 4
|
| 16 | 15 | a1i 9 |
. . 3
|
| 17 | 1, 16 | anbi12d 473 |
. 2
|
| 18 | df-iso 4333 |
. 2
| |
| 19 | df-iso 4333 |
. 2
| |
| 20 | 17, 18, 19 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-po 4332 df-iso 4333 df-cnv 4672 |
| This theorem is referenced by: gtso 8122 |
| Copyright terms: Public domain | W3C validator |