| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnvsom | Unicode version | ||
| Description: The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| cnvsom | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvpom 5212 | 
. . 3
 | |
| 2 | vex 2766 | 
. . . . . . . . 9
 | |
| 3 | vex 2766 | 
. . . . . . . . 9
 | |
| 4 | 2, 3 | brcnv 4849 | 
. . . . . . . 8
 | 
| 5 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 6 | 2, 5 | brcnv 4849 | 
. . . . . . . . . 10
 | 
| 7 | 5, 3 | brcnv 4849 | 
. . . . . . . . . 10
 | 
| 8 | 6, 7 | orbi12i 765 | 
. . . . . . . . 9
 | 
| 9 | orcom 729 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | bitri 184 | 
. . . . . . . 8
 | 
| 11 | 4, 10 | imbi12i 239 | 
. . . . . . 7
 | 
| 12 | 11 | ralbii 2503 | 
. . . . . 6
 | 
| 13 | 12 | 2ralbii 2505 | 
. . . . 5
 | 
| 14 | ralcom 2660 | 
. . . . 5
 | |
| 15 | 13, 14 | bitr3i 186 | 
. . . 4
 | 
| 16 | 15 | a1i 9 | 
. . 3
 | 
| 17 | 1, 16 | anbi12d 473 | 
. 2
 | 
| 18 | df-iso 4332 | 
. 2
 | |
| 19 | df-iso 4332 | 
. 2
 | |
| 20 | 17, 18, 19 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-po 4331 df-iso 4332 df-cnv 4671 | 
| This theorem is referenced by: gtso 8105 | 
| Copyright terms: Public domain | W3C validator |