| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2ralunsn | Unicode version | ||
| Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| 2ralunsn.1 | 
 | 
| 2ralunsn.2 | 
 | 
| 2ralunsn.3 | 
 | 
| Ref | Expression | 
|---|---|
| 2ralunsn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2ralunsn.2 | 
. . . 4
 | |
| 2 | 1 | ralunsn 3827 | 
. . 3
 | 
| 3 | 2 | ralbidv 2497 | 
. 2
 | 
| 4 | 2ralunsn.1 | 
. . . . . 6
 | |
| 5 | 4 | ralbidv 2497 | 
. . . . 5
 | 
| 6 | 2ralunsn.3 | 
. . . . 5
 | |
| 7 | 5, 6 | anbi12d 473 | 
. . . 4
 | 
| 8 | 7 | ralunsn 3827 | 
. . 3
 | 
| 9 | r19.26 2623 | 
. . . 4
 | |
| 10 | 9 | anbi1i 458 | 
. . 3
 | 
| 11 | 8, 10 | bitrdi 196 | 
. 2
 | 
| 12 | 3, 11 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |