Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ralunsn | Unicode version |
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
2ralunsn.1 | |
2ralunsn.2 | |
2ralunsn.3 |
Ref | Expression |
---|---|
2ralunsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralunsn.2 | . . . 4 | |
2 | 1 | ralunsn 3793 | . . 3 |
3 | 2 | ralbidv 2475 | . 2 |
4 | 2ralunsn.1 | . . . . . 6 | |
5 | 4 | ralbidv 2475 | . . . . 5 |
6 | 2ralunsn.3 | . . . . 5 | |
7 | 5, 6 | anbi12d 473 | . . . 4 |
8 | 7 | ralunsn 3793 | . . 3 |
9 | r19.26 2601 | . . . 4 | |
10 | 9 | anbi1i 458 | . . 3 |
11 | 8, 10 | bitrdi 196 | . 2 |
12 | 3, 11 | bitrd 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 cun 3125 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |