Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ralunsn | Unicode version |
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
2ralunsn.1 | |
2ralunsn.2 | |
2ralunsn.3 |
Ref | Expression |
---|---|
2ralunsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralunsn.2 | . . . 4 | |
2 | 1 | ralunsn 3777 | . . 3 |
3 | 2 | ralbidv 2466 | . 2 |
4 | 2ralunsn.1 | . . . . . 6 | |
5 | 4 | ralbidv 2466 | . . . . 5 |
6 | 2ralunsn.3 | . . . . 5 | |
7 | 5, 6 | anbi12d 465 | . . . 4 |
8 | 7 | ralunsn 3777 | . . 3 |
9 | r19.26 2592 | . . . 4 | |
10 | 9 | anbi1i 454 | . . 3 |
11 | 8, 10 | bitrdi 195 | . 2 |
12 | 3, 11 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cun 3114 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |