| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ralunsn | GIF version | ||
| Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| 2ralunsn.1 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| 2ralunsn.2 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| 2ralunsn.3 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| 2ralunsn | ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralunsn.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ralunsn 3828 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| 3 | 2 | ralbidv 2497 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓))) |
| 4 | 2ralunsn.1 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 4 | ralbidv 2497 | . . . . 5 ⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜒)) |
| 6 | 2ralunsn.3 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) | |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ (𝑥 = 𝐵 → ((∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃))) |
| 8 | 7 | ralunsn 3828 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| 9 | r19.26 2623 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 10 | 9 | anbi1i 458 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃))) |
| 11 | 8, 10 | bitrdi 196 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| 12 | 3, 11 | bitrd 188 | 1 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∪ cun 3155 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |