ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralunsn GIF version

Theorem 2ralunsn 3778
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypotheses
Ref Expression
2ralunsn.1 (𝑥 = 𝐵 → (𝜑𝜒))
2ralunsn.2 (𝑦 = 𝐵 → (𝜑𝜓))
2ralunsn.3 (𝑥 = 𝐵 → (𝜓𝜃))
Assertion
Ref Expression
2ralunsn (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝜒,𝑥   𝜓,𝑦   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem 2ralunsn
StepHypRef Expression
1 2ralunsn.2 . . . 4 (𝑦 = 𝐵 → (𝜑𝜓))
21ralunsn 3777 . . 3 (𝐵𝐶 → (∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑦𝐴 𝜑𝜓)))
32ralbidv 2466 . 2 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦𝐴 𝜑𝜓)))
4 2ralunsn.1 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
54ralbidv 2466 . . . . 5 (𝑥 = 𝐵 → (∀𝑦𝐴 𝜑 ↔ ∀𝑦𝐴 𝜒))
6 2ralunsn.3 . . . . 5 (𝑥 = 𝐵 → (𝜓𝜃))
75, 6anbi12d 465 . . . 4 (𝑥 = 𝐵 → ((∀𝑦𝐴 𝜑𝜓) ↔ (∀𝑦𝐴 𝜒𝜃)))
87ralunsn 3777 . . 3 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦𝐴 𝜑𝜓) ↔ (∀𝑥𝐴 (∀𝑦𝐴 𝜑𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
9 r19.26 2592 . . . 4 (∀𝑥𝐴 (∀𝑦𝐴 𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
109anbi1i 454 . . 3 ((∀𝑥𝐴 (∀𝑦𝐴 𝜑𝜓) ∧ (∀𝑦𝐴 𝜒𝜃)) ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃)))
118, 10bitrdi 195 . 2 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})(∀𝑦𝐴 𝜑𝜓) ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
123, 11bitrd 187 1 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  cun 3114  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator