Proof of Theorem 2sb6rf
Step | Hyp | Ref
| Expression |
1 | | 2sb5rf.1 |
. . 3
⊢ (𝜑 → ∀𝑧𝜑) |
2 | 1 | sb6rf 1841 |
. 2
⊢ (𝜑 ↔ ∀𝑧(𝑧 = 𝑥 → [𝑧 / 𝑥]𝜑)) |
3 | | 19.21v 1861 |
. . . 4
⊢
(∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
4 | | sbcom2 1975 |
. . . . . . 7
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) |
5 | 4 | imbi2i 225 |
. . . . . 6
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) |
6 | | impexp 261 |
. . . . . 6
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) ↔ (𝑧 = 𝑥 → (𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
7 | 5, 6 | bitri 183 |
. . . . 5
⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (𝑧 = 𝑥 → (𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
8 | 7 | albii 1458 |
. . . 4
⊢
(∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
9 | | 2sb5rf.2 |
. . . . . . 7
⊢ (𝜑 → ∀𝑤𝜑) |
10 | 9 | hbsbv 1929 |
. . . . . 6
⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑤[𝑧 / 𝑥]𝜑) |
11 | 10 | sb6rf 1841 |
. . . . 5
⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑤(𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) |
12 | 11 | imbi2i 225 |
. . . 4
⊢ ((𝑧 = 𝑥 → [𝑧 / 𝑥]𝜑) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦 → [𝑤 / 𝑦][𝑧 / 𝑥]𝜑))) |
13 | 3, 8, 12 | 3bitr4ri 212 |
. . 3
⊢ ((𝑧 = 𝑥 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
14 | 13 | albii 1458 |
. 2
⊢
(∀𝑧(𝑧 = 𝑥 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
15 | 2, 14 | bitri 183 |
1
⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |