Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqer | Unicode version |
Description: Equivalence relation involving equality of dependent classes and . (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 | |
2 | 1 | relopabi 4730 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | id 19 | . . . . . 6 | |
5 | 4 | eqcomd 2171 | . . . . 5 |
6 | eqer.1 | . . . . . 6 | |
7 | 6, 1 | eqerlem 6532 | . . . . 5 |
8 | 6, 1 | eqerlem 6532 | . . . . 5 |
9 | 5, 7, 8 | 3imtr4i 200 | . . . 4 |
10 | 9 | adantl 275 | . . 3 |
11 | eqtr 2183 | . . . . 5 | |
12 | 6, 1 | eqerlem 6532 | . . . . . 6 |
13 | 7, 12 | anbi12i 456 | . . . . 5 |
14 | 6, 1 | eqerlem 6532 | . . . . 5 |
15 | 11, 13, 14 | 3imtr4i 200 | . . . 4 |
16 | 15 | adantl 275 | . . 3 |
17 | vex 2729 | . . . . 5 | |
18 | eqid 2165 | . . . . . 6 | |
19 | 6, 1 | eqerlem 6532 | . . . . . 6 |
20 | 18, 19 | mpbir 145 | . . . . 5 |
21 | 17, 20 | 2th 173 | . . . 4 |
22 | 21 | a1i 9 | . . 3 |
23 | 3, 10, 16, 22 | iserd 6527 | . 2 |
24 | 23 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wtru 1344 wcel 2136 cvv 2726 csb 3045 class class class wbr 3982 copab 4042 wrel 4609 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-er 6501 |
This theorem is referenced by: ider 6534 |
Copyright terms: Public domain | W3C validator |