Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqer | Unicode version |
Description: Equivalence relation involving equality of dependent classes and . (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 | |
2 | 1 | relopabi 4737 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | id 19 | . . . . . 6 | |
5 | 4 | eqcomd 2176 | . . . . 5 |
6 | eqer.1 | . . . . . 6 | |
7 | 6, 1 | eqerlem 6544 | . . . . 5 |
8 | 6, 1 | eqerlem 6544 | . . . . 5 |
9 | 5, 7, 8 | 3imtr4i 200 | . . . 4 |
10 | 9 | adantl 275 | . . 3 |
11 | eqtr 2188 | . . . . 5 | |
12 | 6, 1 | eqerlem 6544 | . . . . . 6 |
13 | 7, 12 | anbi12i 457 | . . . . 5 |
14 | 6, 1 | eqerlem 6544 | . . . . 5 |
15 | 11, 13, 14 | 3imtr4i 200 | . . . 4 |
16 | 15 | adantl 275 | . . 3 |
17 | vex 2733 | . . . . 5 | |
18 | eqid 2170 | . . . . . 6 | |
19 | 6, 1 | eqerlem 6544 | . . . . . 6 |
20 | 18, 19 | mpbir 145 | . . . . 5 |
21 | 17, 20 | 2th 173 | . . . 4 |
22 | 21 | a1i 9 | . . 3 |
23 | 3, 10, 16, 22 | iserd 6539 | . 2 |
24 | 23 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wtru 1349 wcel 2141 cvv 2730 csb 3049 class class class wbr 3989 copab 4049 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: ider 6546 |
Copyright terms: Public domain | W3C validator |