| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqer | Unicode version | ||
| Description: Equivalence relation
involving equality of dependent classes |
| Ref | Expression |
|---|---|
| eqer.1 |
|
| eqer.2 |
|
| Ref | Expression |
|---|---|
| eqer |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.2 |
. . . . 5
| |
| 2 | 1 | relopabi 4846 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | id 19 |
. . . . . 6
| |
| 5 | 4 | eqcomd 2235 |
. . . . 5
|
| 6 | eqer.1 |
. . . . . 6
| |
| 7 | 6, 1 | eqerlem 6709 |
. . . . 5
|
| 8 | 6, 1 | eqerlem 6709 |
. . . . 5
|
| 9 | 5, 7, 8 | 3imtr4i 201 |
. . . 4
|
| 10 | 9 | adantl 277 |
. . 3
|
| 11 | eqtr 2247 |
. . . . 5
| |
| 12 | 6, 1 | eqerlem 6709 |
. . . . . 6
|
| 13 | 7, 12 | anbi12i 460 |
. . . . 5
|
| 14 | 6, 1 | eqerlem 6709 |
. . . . 5
|
| 15 | 11, 13, 14 | 3imtr4i 201 |
. . . 4
|
| 16 | 15 | adantl 277 |
. . 3
|
| 17 | vex 2802 |
. . . . 5
| |
| 18 | eqid 2229 |
. . . . . 6
| |
| 19 | 6, 1 | eqerlem 6709 |
. . . . . 6
|
| 20 | 18, 19 | mpbir 146 |
. . . . 5
|
| 21 | 17, 20 | 2th 174 |
. . . 4
|
| 22 | 21 | a1i 9 |
. . 3
|
| 23 | 3, 10, 16, 22 | iserd 6704 |
. 2
|
| 24 | 23 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-er 6678 |
| This theorem is referenced by: ider 6711 |
| Copyright terms: Public domain | W3C validator |