Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqer | Unicode version |
Description: Equivalence relation involving equality of dependent classes and . (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 | |
2 | 1 | relopabi 4746 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | id 19 | . . . . . 6 | |
5 | 4 | eqcomd 2181 | . . . . 5 |
6 | eqer.1 | . . . . . 6 | |
7 | 6, 1 | eqerlem 6556 | . . . . 5 |
8 | 6, 1 | eqerlem 6556 | . . . . 5 |
9 | 5, 7, 8 | 3imtr4i 201 | . . . 4 |
10 | 9 | adantl 277 | . . 3 |
11 | eqtr 2193 | . . . . 5 | |
12 | 6, 1 | eqerlem 6556 | . . . . . 6 |
13 | 7, 12 | anbi12i 460 | . . . . 5 |
14 | 6, 1 | eqerlem 6556 | . . . . 5 |
15 | 11, 13, 14 | 3imtr4i 201 | . . . 4 |
16 | 15 | adantl 277 | . . 3 |
17 | vex 2738 | . . . . 5 | |
18 | eqid 2175 | . . . . . 6 | |
19 | 6, 1 | eqerlem 6556 | . . . . . 6 |
20 | 18, 19 | mpbir 146 | . . . . 5 |
21 | 17, 20 | 2th 174 | . . . 4 |
22 | 21 | a1i 9 | . . 3 |
23 | 3, 10, 16, 22 | iserd 6551 | . 2 |
24 | 23 | mptru 1362 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wtru 1354 wcel 2146 cvv 2735 csb 3055 class class class wbr 3998 copab 4058 wrel 4625 wer 6522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-er 6525 |
This theorem is referenced by: ider 6558 |
Copyright terms: Public domain | W3C validator |