ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqer Unicode version

Theorem eqer 6675
Description: Equivalence relation involving equality of dependent classes  A ( x ) and  B ( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
eqer.1  |-  ( x  =  y  ->  A  =  B )
eqer.2  |-  R  =  { <. x ,  y
>.  |  A  =  B }
Assertion
Ref Expression
eqer  |-  R  Er  _V
Distinct variable groups:    x, y    y, A    x, B
Allowed substitution hints:    A( x)    B( y)    R( x, y)

Proof of Theorem eqer
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqer.2 . . . . 5  |-  R  =  { <. x ,  y
>.  |  A  =  B }
21relopabi 4821 . . . 4  |-  Rel  R
32a1i 9 . . 3  |-  ( T. 
->  Rel  R )
4 id 19 . . . . . 6  |-  ( [_ z  /  x ]_ A  =  [_ w  /  x ]_ A  ->  [_ z  /  x ]_ A  = 
[_ w  /  x ]_ A )
54eqcomd 2213 . . . . 5  |-  ( [_ z  /  x ]_ A  =  [_ w  /  x ]_ A  ->  [_ w  /  x ]_ A  = 
[_ z  /  x ]_ A )
6 eqer.1 . . . . . 6  |-  ( x  =  y  ->  A  =  B )
76, 1eqerlem 6674 . . . . 5  |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A
)
86, 1eqerlem 6674 . . . . 5  |-  ( w R z  <->  [_ w  /  x ]_ A  =  [_ z  /  x ]_ A
)
95, 7, 83imtr4i 201 . . . 4  |-  ( z R w  ->  w R z )
109adantl 277 . . 3  |-  ( ( T.  /\  z R w )  ->  w R z )
11 eqtr 2225 . . . . 5  |-  ( (
[_ z  /  x ]_ A  =  [_ w  /  x ]_ A  /\  [_ w  /  x ]_ A  =  [_ v  /  x ]_ A )  ->  [_ z  /  x ]_ A  =  [_ v  /  x ]_ A )
126, 1eqerlem 6674 . . . . . 6  |-  ( w R v  <->  [_ w  /  x ]_ A  =  [_ v  /  x ]_ A
)
137, 12anbi12i 460 . . . . 5  |-  ( ( z R w  /\  w R v )  <->  ( [_ z  /  x ]_ A  =  [_ w  /  x ]_ A  /\  [_ w  /  x ]_ A  = 
[_ v  /  x ]_ A ) )
146, 1eqerlem 6674 . . . . 5  |-  ( z R v  <->  [_ z  /  x ]_ A  =  [_ v  /  x ]_ A
)
1511, 13, 143imtr4i 201 . . . 4  |-  ( ( z R w  /\  w R v )  -> 
z R v )
1615adantl 277 . . 3  |-  ( ( T.  /\  ( z R w  /\  w R v ) )  ->  z R v )
17 vex 2779 . . . . 5  |-  z  e. 
_V
18 eqid 2207 . . . . . 6  |-  [_ z  /  x ]_ A  = 
[_ z  /  x ]_ A
196, 1eqerlem 6674 . . . . . 6  |-  ( z R z  <->  [_ z  /  x ]_ A  =  [_ z  /  x ]_ A
)
2018, 19mpbir 146 . . . . 5  |-  z R z
2117, 202th 174 . . . 4  |-  ( z  e.  _V  <->  z R
z )
2221a1i 9 . . 3  |-  ( T. 
->  ( z  e.  _V  <->  z R z ) )
233, 10, 16, 22iserd 6669 . 2  |-  ( T. 
->  R  Er  _V )
2423mptru 1382 1  |-  R  Er  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   T. wtru 1374    e. wcel 2178   _Vcvv 2776   [_csb 3101   class class class wbr 4059   {copab 4120   Rel wrel 4698    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-er 6643
This theorem is referenced by:  ider  6676
  Copyright terms: Public domain W3C validator