| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo2nd | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| fo2nd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . . . 6
| |
| 2 | 1 | snex 4229 |
. . . . 5
|
| 3 | 2 | rnex 4946 |
. . . 4
|
| 4 | 3 | uniex 4484 |
. . 3
|
| 5 | df-2nd 6227 |
. . 3
| |
| 6 | 4, 5 | fnmpti 5404 |
. 2
|
| 7 | 5 | rnmpt 4926 |
. . 3
|
| 8 | vex 2775 |
. . . . 5
| |
| 9 | 8, 8 | opex 4273 |
. . . . . 6
|
| 10 | 8, 8 | op2nda 5167 |
. . . . . . 7
|
| 11 | 10 | eqcomi 2209 |
. . . . . 6
|
| 12 | sneq 3644 |
. . . . . . . . . 10
| |
| 13 | 12 | rneqd 4907 |
. . . . . . . . 9
|
| 14 | 13 | unieqd 3861 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2217 |
. . . . . . 7
|
| 16 | 15 | rspcev 2877 |
. . . . . 6
|
| 17 | 9, 11, 16 | mp2an 426 |
. . . . 5
|
| 18 | 8, 17 | 2th 174 |
. . . 4
|
| 19 | 18 | abbi2i 2320 |
. . 3
|
| 20 | 7, 19 | eqtr4i 2229 |
. 2
|
| 21 | df-fo 5277 |
. 2
| |
| 22 | 6, 20, 21 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-fo 5277 df-2nd 6227 |
| This theorem is referenced by: 2ndcof 6250 2ndexg 6254 df2nd2 6306 2ndconst 6308 suplocexprlemmu 7831 suplocexprlemdisj 7833 suplocexprlemloc 7834 suplocexprlemub 7836 upxp 14744 uptx 14746 cnmpt2nd 14761 |
| Copyright terms: Public domain | W3C validator |