ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd Unicode version

Theorem fo2nd 6267
Description: The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd  |-  2nd : _V -onto-> _V

Proof of Theorem fo2nd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . . 6  |-  x  e. 
_V
21snex 4245 . . . . 5  |-  { x }  e.  _V
32rnex 4965 . . . 4  |-  ran  {
x }  e.  _V
43uniex 4502 . . 3  |-  U. ran  { x }  e.  _V
5 df-2nd 6250 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
64, 5fnmpti 5424 . 2  |-  2nd  Fn  _V
75rnmpt 4945 . . 3  |-  ran  2nd  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
8 vex 2779 . . . . 5  |-  y  e. 
_V
98, 8opex 4291 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op2nda 5186 . . . . . . 7  |-  U. ran  {
<. y ,  y >. }  =  y
1110eqcomi 2211 . . . . . 6  |-  y  = 
U. ran  { <. y ,  y >. }
12 sneq 3654 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312rneqd 4926 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  ran  { x }  =  ran  { <. y ,  y >. } )
1413unieqd 3875 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  y >. } )
1514eqeq2d 2219 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. ran  { x } 
<->  y  =  U. ran  {
<. y ,  y >. } ) )
1615rspcev 2884 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. ran  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. ran  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. ran  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. ran  { x } )
1918abbi2i 2322 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
207, 19eqtr4i 2231 . 2  |-  ran  2nd  =  _V
21 df-fo 5296 . 2  |-  ( 2nd
: _V -onto-> _V  <->  ( 2nd  Fn 
_V  /\  ran  2nd  =  _V ) )
226, 20, 21mpbir2an 945 1  |-  2nd : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776   {csn 3643   <.cop 3646   U.cuni 3864   ran crn 4694    Fn wfn 5285   -onto->wfo 5288   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-fo 5296  df-2nd 6250
This theorem is referenced by:  2ndcof  6273  2ndexg  6277  df2nd2  6329  2ndconst  6331  suplocexprlemmu  7866  suplocexprlemdisj  7868  suplocexprlemloc  7869  suplocexprlemub  7871  upxp  14859  uptx  14861  cnmpt2nd  14876
  Copyright terms: Public domain W3C validator