ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd Unicode version

Theorem fo2nd 6243
Description: The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd  |-  2nd : _V -onto-> _V

Proof of Theorem fo2nd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . . 6  |-  x  e. 
_V
21snex 4228 . . . . 5  |-  { x }  e.  _V
32rnex 4945 . . . 4  |-  ran  {
x }  e.  _V
43uniex 4483 . . 3  |-  U. ran  { x }  e.  _V
5 df-2nd 6226 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
64, 5fnmpti 5403 . 2  |-  2nd  Fn  _V
75rnmpt 4925 . . 3  |-  ran  2nd  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
8 vex 2774 . . . . 5  |-  y  e. 
_V
98, 8opex 4272 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op2nda 5166 . . . . . . 7  |-  U. ran  {
<. y ,  y >. }  =  y
1110eqcomi 2208 . . . . . 6  |-  y  = 
U. ran  { <. y ,  y >. }
12 sneq 3643 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312rneqd 4906 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  ran  { x }  =  ran  { <. y ,  y >. } )
1413unieqd 3860 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  y >. } )
1514eqeq2d 2216 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. ran  { x } 
<->  y  =  U. ran  {
<. y ,  y >. } ) )
1615rspcev 2876 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. ran  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. ran  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. ran  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. ran  { x } )
1918abbi2i 2319 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
207, 19eqtr4i 2228 . 2  |-  ran  2nd  =  _V
21 df-fo 5276 . 2  |-  ( 2nd
: _V -onto-> _V  <->  ( 2nd  Fn 
_V  /\  ran  2nd  =  _V ) )
226, 20, 21mpbir2an 944 1  |-  2nd : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484   _Vcvv 2771   {csn 3632   <.cop 3635   U.cuni 3849   ran crn 4675    Fn wfn 5265   -onto->wfo 5268   2ndc2nd 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-fo 5276  df-2nd 6226
This theorem is referenced by:  2ndcof  6249  2ndexg  6253  df2nd2  6305  2ndconst  6307  suplocexprlemmu  7830  suplocexprlemdisj  7832  suplocexprlemloc  7833  suplocexprlemub  7835  upxp  14715  uptx  14717  cnmpt2nd  14732
  Copyright terms: Public domain W3C validator