ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd Unicode version

Theorem fo2nd 6302
Description: The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd  |-  2nd : _V -onto-> _V

Proof of Theorem fo2nd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . 6  |-  x  e. 
_V
21snex 4268 . . . . 5  |-  { x }  e.  _V
32rnex 4991 . . . 4  |-  ran  {
x }  e.  _V
43uniex 4527 . . 3  |-  U. ran  { x }  e.  _V
5 df-2nd 6285 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
64, 5fnmpti 5451 . 2  |-  2nd  Fn  _V
75rnmpt 4971 . . 3  |-  ran  2nd  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
8 vex 2802 . . . . 5  |-  y  e. 
_V
98, 8opex 4314 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op2nda 5212 . . . . . . 7  |-  U. ran  {
<. y ,  y >. }  =  y
1110eqcomi 2233 . . . . . 6  |-  y  = 
U. ran  { <. y ,  y >. }
12 sneq 3677 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312rneqd 4952 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  ran  { x }  =  ran  { <. y ,  y >. } )
1413unieqd 3898 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  y >. } )
1514eqeq2d 2241 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. ran  { x } 
<->  y  =  U. ran  {
<. y ,  y >. } ) )
1615rspcev 2907 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. ran  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. ran  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. ran  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. ran  { x } )
1918abbi2i 2344 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
207, 19eqtr4i 2253 . 2  |-  ran  2nd  =  _V
21 df-fo 5323 . 2  |-  ( 2nd
: _V -onto-> _V  <->  ( 2nd  Fn 
_V  /\  ran  2nd  =  _V ) )
226, 20, 21mpbir2an 948 1  |-  2nd : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799   {csn 3666   <.cop 3669   U.cuni 3887   ran crn 4719    Fn wfn 5312   -onto->wfo 5315   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-fo 5323  df-2nd 6285
This theorem is referenced by:  2ndcof  6308  2ndexg  6312  df2nd2  6364  2ndconst  6366  suplocexprlemmu  7901  suplocexprlemdisj  7903  suplocexprlemloc  7904  suplocexprlemub  7906  upxp  14940  uptx  14942  cnmpt2nd  14957
  Copyright terms: Public domain W3C validator