| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo2nd | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| fo2nd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . . 6
| |
| 2 | 1 | snex 4245 |
. . . . 5
|
| 3 | 2 | rnex 4965 |
. . . 4
|
| 4 | 3 | uniex 4502 |
. . 3
|
| 5 | df-2nd 6250 |
. . 3
| |
| 6 | 4, 5 | fnmpti 5424 |
. 2
|
| 7 | 5 | rnmpt 4945 |
. . 3
|
| 8 | vex 2779 |
. . . . 5
| |
| 9 | 8, 8 | opex 4291 |
. . . . . 6
|
| 10 | 8, 8 | op2nda 5186 |
. . . . . . 7
|
| 11 | 10 | eqcomi 2211 |
. . . . . 6
|
| 12 | sneq 3654 |
. . . . . . . . . 10
| |
| 13 | 12 | rneqd 4926 |
. . . . . . . . 9
|
| 14 | 13 | unieqd 3875 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2219 |
. . . . . . 7
|
| 16 | 15 | rspcev 2884 |
. . . . . 6
|
| 17 | 9, 11, 16 | mp2an 426 |
. . . . 5
|
| 18 | 8, 17 | 2th 174 |
. . . 4
|
| 19 | 18 | abbi2i 2322 |
. . 3
|
| 20 | 7, 19 | eqtr4i 2231 |
. 2
|
| 21 | df-fo 5296 |
. 2
| |
| 22 | 6, 20, 21 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-fo 5296 df-2nd 6250 |
| This theorem is referenced by: 2ndcof 6273 2ndexg 6277 df2nd2 6329 2ndconst 6331 suplocexprlemmu 7866 suplocexprlemdisj 7868 suplocexprlemloc 7869 suplocexprlemub 7871 upxp 14859 uptx 14861 cnmpt2nd 14876 |
| Copyright terms: Public domain | W3C validator |