ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd Unicode version

Theorem fo2nd 6161
Description: The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd  |-  2nd : _V -onto-> _V

Proof of Theorem fo2nd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . . 6  |-  x  e. 
_V
21snex 4187 . . . . 5  |-  { x }  e.  _V
32rnex 4896 . . . 4  |-  ran  {
x }  e.  _V
43uniex 4439 . . 3  |-  U. ran  { x }  e.  _V
5 df-2nd 6144 . . 3  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
64, 5fnmpti 5346 . 2  |-  2nd  Fn  _V
75rnmpt 4877 . . 3  |-  ran  2nd  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
8 vex 2742 . . . . 5  |-  y  e. 
_V
98, 8opex 4231 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op2nda 5115 . . . . . . 7  |-  U. ran  {
<. y ,  y >. }  =  y
1110eqcomi 2181 . . . . . 6  |-  y  = 
U. ran  { <. y ,  y >. }
12 sneq 3605 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312rneqd 4858 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  ran  { x }  =  ran  { <. y ,  y >. } )
1413unieqd 3822 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. ran  { x }  =  U. ran  { <. y ,  y >. } )
1514eqeq2d 2189 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. ran  { x } 
<->  y  =  U. ran  {
<. y ,  y >. } ) )
1615rspcev 2843 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. ran  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. ran  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. ran  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. ran  { x } )
1918abbi2i 2292 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. ran  { x } }
207, 19eqtr4i 2201 . 2  |-  ran  2nd  =  _V
21 df-fo 5224 . 2  |-  ( 2nd
: _V -onto-> _V  <->  ( 2nd  Fn 
_V  /\  ran  2nd  =  _V ) )
226, 20, 21mpbir2an 942 1  |-  2nd : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   _Vcvv 2739   {csn 3594   <.cop 3597   U.cuni 3811   ran crn 4629    Fn wfn 5213   -onto->wfo 5216   2ndc2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-fo 5224  df-2nd 6144
This theorem is referenced by:  2ndcof  6167  2ndexg  6171  df2nd2  6223  2ndconst  6225  suplocexprlemmu  7719  suplocexprlemdisj  7721  suplocexprlemloc  7722  suplocexprlemub  7724  upxp  13857  uptx  13859  cnmpt2nd  13874
  Copyright terms: Public domain W3C validator