Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fo2nd | Unicode version |
Description: The function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . 6 | |
2 | 1 | snex 4164 | . . . . 5 |
3 | 2 | rnex 4871 | . . . 4 |
4 | 3 | uniex 4415 | . . 3 |
5 | df-2nd 6109 | . . 3 | |
6 | 4, 5 | fnmpti 5316 | . 2 |
7 | 5 | rnmpt 4852 | . . 3 |
8 | vex 2729 | . . . . 5 | |
9 | 8, 8 | opex 4207 | . . . . . 6 |
10 | 8, 8 | op2nda 5088 | . . . . . . 7 |
11 | 10 | eqcomi 2169 | . . . . . 6 |
12 | sneq 3587 | . . . . . . . . . 10 | |
13 | 12 | rneqd 4833 | . . . . . . . . 9 |
14 | 13 | unieqd 3800 | . . . . . . . 8 |
15 | 14 | eqeq2d 2177 | . . . . . . 7 |
16 | 15 | rspcev 2830 | . . . . . 6 |
17 | 9, 11, 16 | mp2an 423 | . . . . 5 |
18 | 8, 17 | 2th 173 | . . . 4 |
19 | 18 | abbi2i 2281 | . . 3 |
20 | 7, 19 | eqtr4i 2189 | . 2 |
21 | df-fo 5194 | . 2 | |
22 | 6, 20, 21 | mpbir2an 932 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 csn 3576 cop 3579 cuni 3789 crn 4605 wfn 5183 wfo 5186 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-fo 5194 df-2nd 6109 |
This theorem is referenced by: 2ndcof 6132 2ndexg 6136 df2nd2 6188 2ndconst 6190 suplocexprlemmu 7659 suplocexprlemdisj 7661 suplocexprlemloc 7662 suplocexprlemub 7664 upxp 12912 uptx 12914 cnmpt2nd 12929 |
Copyright terms: Public domain | W3C validator |