ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwv Unicode version

Theorem pwv 3838
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv  |-  ~P _V  =  _V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3205 . . . 4  |-  x  C_  _V
2 vex 2766 . . . . 5  |-  x  e. 
_V
32elpw 3611 . . . 4  |-  ( x  e.  ~P _V  <->  x  C_  _V )
41, 3mpbir 146 . . 3  |-  x  e. 
~P _V
54, 22th 174 . 2  |-  ( x  e.  ~P _V  <->  x  e.  _V )
65eqriv 2193 1  |-  ~P _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  univ  4511
  Copyright terms: Public domain W3C validator