| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ener | Unicode version | ||
| Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| ener |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 6854 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | bren 6858 |
. . . . 5
| |
| 4 | f1ocnv 5557 |
. . . . . . 7
| |
| 5 | vex 2779 |
. . . . . . . 8
| |
| 6 | vex 2779 |
. . . . . . . 8
| |
| 7 | f1oen2g 6869 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | mp3an12 1340 |
. . . . . . 7
|
| 9 | 4, 8 | syl 14 |
. . . . . 6
|
| 10 | 9 | exlimiv 1622 |
. . . . 5
|
| 11 | 3, 10 | sylbi 121 |
. . . 4
|
| 12 | 11 | adantl 277 |
. . 3
|
| 13 | bren 6858 |
. . . . 5
| |
| 14 | bren 6858 |
. . . . 5
| |
| 15 | eeanv 1961 |
. . . . . 6
| |
| 16 | f1oco 5567 |
. . . . . . . . 9
| |
| 17 | 16 | ancoms 268 |
. . . . . . . 8
|
| 18 | vex 2779 |
. . . . . . . . 9
| |
| 19 | f1oen2g 6869 |
. . . . . . . . 9
| |
| 20 | 6, 18, 19 | mp3an12 1340 |
. . . . . . . 8
|
| 21 | 17, 20 | syl 14 |
. . . . . . 7
|
| 22 | 21 | exlimivv 1921 |
. . . . . 6
|
| 23 | 15, 22 | sylbir 135 |
. . . . 5
|
| 24 | 13, 14, 23 | syl2anb 291 |
. . . 4
|
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | 6 | enref 6879 |
. . . . 5
|
| 27 | 6, 26 | 2th 174 |
. . . 4
|
| 28 | 27 | a1i 9 |
. . 3
|
| 29 | 2, 12, 25, 28 | iserd 6669 |
. 2
|
| 30 | 29 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-er 6643 df-en 6851 |
| This theorem is referenced by: ensymb 6895 entr 6899 |
| Copyright terms: Public domain | W3C validator |