| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ener | Unicode version | ||
| Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| ener |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 6833 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | bren 6837 |
. . . . 5
| |
| 4 | f1ocnv 5537 |
. . . . . . 7
| |
| 5 | vex 2775 |
. . . . . . . 8
| |
| 6 | vex 2775 |
. . . . . . . 8
| |
| 7 | f1oen2g 6848 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | mp3an12 1340 |
. . . . . . 7
|
| 9 | 4, 8 | syl 14 |
. . . . . 6
|
| 10 | 9 | exlimiv 1621 |
. . . . 5
|
| 11 | 3, 10 | sylbi 121 |
. . . 4
|
| 12 | 11 | adantl 277 |
. . 3
|
| 13 | bren 6837 |
. . . . 5
| |
| 14 | bren 6837 |
. . . . 5
| |
| 15 | eeanv 1960 |
. . . . . 6
| |
| 16 | f1oco 5547 |
. . . . . . . . 9
| |
| 17 | 16 | ancoms 268 |
. . . . . . . 8
|
| 18 | vex 2775 |
. . . . . . . . 9
| |
| 19 | f1oen2g 6848 |
. . . . . . . . 9
| |
| 20 | 6, 18, 19 | mp3an12 1340 |
. . . . . . . 8
|
| 21 | 17, 20 | syl 14 |
. . . . . . 7
|
| 22 | 21 | exlimivv 1920 |
. . . . . 6
|
| 23 | 15, 22 | sylbir 135 |
. . . . 5
|
| 24 | 13, 14, 23 | syl2anb 291 |
. . . 4
|
| 25 | 24 | adantl 277 |
. . 3
|
| 26 | 6 | enref 6858 |
. . . . 5
|
| 27 | 6, 26 | 2th 174 |
. . . 4
|
| 28 | 27 | a1i 9 |
. . 3
|
| 29 | 2, 12, 25, 28 | iserd 6648 |
. 2
|
| 30 | 29 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-er 6622 df-en 6830 |
| This theorem is referenced by: ensymb 6874 entr 6878 |
| Copyright terms: Public domain | W3C validator |