Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ener | Unicode version |
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
ener |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 6710 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | bren 6713 | . . . . 5 | |
4 | f1ocnv 5445 | . . . . . . 7 | |
5 | vex 2729 | . . . . . . . 8 | |
6 | vex 2729 | . . . . . . . 8 | |
7 | f1oen2g 6721 | . . . . . . . 8 | |
8 | 5, 6, 7 | mp3an12 1317 | . . . . . . 7 |
9 | 4, 8 | syl 14 | . . . . . 6 |
10 | 9 | exlimiv 1586 | . . . . 5 |
11 | 3, 10 | sylbi 120 | . . . 4 |
12 | 11 | adantl 275 | . . 3 |
13 | bren 6713 | . . . . 5 | |
14 | bren 6713 | . . . . 5 | |
15 | eeanv 1920 | . . . . . 6 | |
16 | f1oco 5455 | . . . . . . . . 9 | |
17 | 16 | ancoms 266 | . . . . . . . 8 |
18 | vex 2729 | . . . . . . . . 9 | |
19 | f1oen2g 6721 | . . . . . . . . 9 | |
20 | 6, 18, 19 | mp3an12 1317 | . . . . . . . 8 |
21 | 17, 20 | syl 14 | . . . . . . 7 |
22 | 21 | exlimivv 1884 | . . . . . 6 |
23 | 15, 22 | sylbir 134 | . . . . 5 |
24 | 13, 14, 23 | syl2anb 289 | . . . 4 |
25 | 24 | adantl 275 | . . 3 |
26 | 6 | enref 6731 | . . . . 5 |
27 | 6, 26 | 2th 173 | . . . 4 |
28 | 27 | a1i 9 | . . 3 |
29 | 2, 12, 25, 28 | iserd 6527 | . 2 |
30 | 29 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wtru 1344 wex 1480 wcel 2136 cvv 2726 class class class wbr 3982 ccnv 4603 ccom 4608 wrel 4609 wf1o 5187 wer 6498 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-er 6501 df-en 6707 |
This theorem is referenced by: ensymb 6746 entr 6750 |
Copyright terms: Public domain | W3C validator |