ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ener Unicode version

Theorem ener 6838
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
ener  |-  ~~  Er  _V

Proof of Theorem ener
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6803 . . . 4  |-  Rel  ~~
21a1i 9 . . 3  |-  ( T. 
->  Rel  ~~  )
3 bren 6806 . . . . 5  |-  ( x 
~~  y  <->  E. f 
f : x -1-1-onto-> y )
4 f1ocnv 5517 . . . . . . 7  |-  ( f : x -1-1-onto-> y  ->  `' f : y -1-1-onto-> x )
5 vex 2766 . . . . . . . 8  |-  y  e. 
_V
6 vex 2766 . . . . . . . 8  |-  x  e. 
_V
7 f1oen2g 6814 . . . . . . . 8  |-  ( ( y  e.  _V  /\  x  e.  _V  /\  `' f : y -1-1-onto-> x )  ->  y  ~~  x )
85, 6, 7mp3an12 1338 . . . . . . 7  |-  ( `' f : y -1-1-onto-> x  -> 
y  ~~  x )
94, 8syl 14 . . . . . 6  |-  ( f : x -1-1-onto-> y  ->  y  ~~  x )
109exlimiv 1612 . . . . 5  |-  ( E. f  f : x -1-1-onto-> y  ->  y  ~~  x
)
113, 10sylbi 121 . . . 4  |-  ( x 
~~  y  ->  y  ~~  x )
1211adantl 277 . . 3  |-  ( ( T.  /\  x  ~~  y )  ->  y  ~~  x )
13 bren 6806 . . . . 5  |-  ( x 
~~  y  <->  E. g 
g : x -1-1-onto-> y )
14 bren 6806 . . . . 5  |-  ( y 
~~  z  <->  E. f 
f : y -1-1-onto-> z )
15 eeanv 1951 . . . . . 6  |-  ( E. g E. f ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  <->  ( E. g  g : x -1-1-onto-> y  /\  E. f  f : y -1-1-onto-> z ) )
16 f1oco 5527 . . . . . . . . 9  |-  ( ( f : y -1-1-onto-> z  /\  g : x -1-1-onto-> y )  ->  (
f  o.  g ) : x -1-1-onto-> z )
1716ancoms 268 . . . . . . . 8  |-  ( ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  (
f  o.  g ) : x -1-1-onto-> z )
18 vex 2766 . . . . . . . . 9  |-  z  e. 
_V
19 f1oen2g 6814 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  z  e.  _V  /\  (
f  o.  g ) : x -1-1-onto-> z )  ->  x  ~~  z )
206, 18, 19mp3an12 1338 . . . . . . . 8  |-  ( ( f  o.  g ) : x -1-1-onto-> z  ->  x  ~~  z )
2117, 20syl 14 . . . . . . 7  |-  ( ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  x  ~~  z )
2221exlimivv 1911 . . . . . 6  |-  ( E. g E. f ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  x  ~~  z )
2315, 22sylbir 135 . . . . 5  |-  ( ( E. g  g : x -1-1-onto-> y  /\  E. f 
f : y -1-1-onto-> z )  ->  x  ~~  z
)
2413, 14, 23syl2anb 291 . . . 4  |-  ( ( x  ~~  y  /\  y  ~~  z )  ->  x  ~~  z )
2524adantl 277 . . 3  |-  ( ( T.  /\  ( x 
~~  y  /\  y  ~~  z ) )  ->  x  ~~  z )
266enref 6824 . . . . 5  |-  x  ~~  x
276, 262th 174 . . . 4  |-  ( x  e.  _V  <->  x  ~~  x )
2827a1i 9 . . 3  |-  ( T. 
->  ( x  e.  _V  <->  x 
~~  x ) )
292, 12, 25, 28iserd 6618 . 2  |-  ( T. 
->  ~~  Er  _V )
3029mptru 1373 1  |-  ~~  Er  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   T. wtru 1365   E.wex 1506    e. wcel 2167   _Vcvv 2763   class class class wbr 4033   `'ccnv 4662    o. ccom 4667   Rel wrel 4668   -1-1-onto->wf1o 5257    Er wer 6589    ~~ cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-er 6592  df-en 6800
This theorem is referenced by:  ensymb  6839  entr  6843
  Copyright terms: Public domain W3C validator