ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ener Unicode version

Theorem ener 6779
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
ener  |-  ~~  Er  _V

Proof of Theorem ener
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6744 . . . 4  |-  Rel  ~~
21a1i 9 . . 3  |-  ( T. 
->  Rel  ~~  )
3 bren 6747 . . . . 5  |-  ( x 
~~  y  <->  E. f 
f : x -1-1-onto-> y )
4 f1ocnv 5475 . . . . . . 7  |-  ( f : x -1-1-onto-> y  ->  `' f : y -1-1-onto-> x )
5 vex 2741 . . . . . . . 8  |-  y  e. 
_V
6 vex 2741 . . . . . . . 8  |-  x  e. 
_V
7 f1oen2g 6755 . . . . . . . 8  |-  ( ( y  e.  _V  /\  x  e.  _V  /\  `' f : y -1-1-onto-> x )  ->  y  ~~  x )
85, 6, 7mp3an12 1327 . . . . . . 7  |-  ( `' f : y -1-1-onto-> x  -> 
y  ~~  x )
94, 8syl 14 . . . . . 6  |-  ( f : x -1-1-onto-> y  ->  y  ~~  x )
109exlimiv 1598 . . . . 5  |-  ( E. f  f : x -1-1-onto-> y  ->  y  ~~  x
)
113, 10sylbi 121 . . . 4  |-  ( x 
~~  y  ->  y  ~~  x )
1211adantl 277 . . 3  |-  ( ( T.  /\  x  ~~  y )  ->  y  ~~  x )
13 bren 6747 . . . . 5  |-  ( x 
~~  y  <->  E. g 
g : x -1-1-onto-> y )
14 bren 6747 . . . . 5  |-  ( y 
~~  z  <->  E. f 
f : y -1-1-onto-> z )
15 eeanv 1932 . . . . . 6  |-  ( E. g E. f ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  <->  ( E. g  g : x -1-1-onto-> y  /\  E. f  f : y -1-1-onto-> z ) )
16 f1oco 5485 . . . . . . . . 9  |-  ( ( f : y -1-1-onto-> z  /\  g : x -1-1-onto-> y )  ->  (
f  o.  g ) : x -1-1-onto-> z )
1716ancoms 268 . . . . . . . 8  |-  ( ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  (
f  o.  g ) : x -1-1-onto-> z )
18 vex 2741 . . . . . . . . 9  |-  z  e. 
_V
19 f1oen2g 6755 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  z  e.  _V  /\  (
f  o.  g ) : x -1-1-onto-> z )  ->  x  ~~  z )
206, 18, 19mp3an12 1327 . . . . . . . 8  |-  ( ( f  o.  g ) : x -1-1-onto-> z  ->  x  ~~  z )
2117, 20syl 14 . . . . . . 7  |-  ( ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  x  ~~  z )
2221exlimivv 1896 . . . . . 6  |-  ( E. g E. f ( g : x -1-1-onto-> y  /\  f : y -1-1-onto-> z )  ->  x  ~~  z )
2315, 22sylbir 135 . . . . 5  |-  ( ( E. g  g : x -1-1-onto-> y  /\  E. f 
f : y -1-1-onto-> z )  ->  x  ~~  z
)
2413, 14, 23syl2anb 291 . . . 4  |-  ( ( x  ~~  y  /\  y  ~~  z )  ->  x  ~~  z )
2524adantl 277 . . 3  |-  ( ( T.  /\  ( x 
~~  y  /\  y  ~~  z ) )  ->  x  ~~  z )
266enref 6765 . . . . 5  |-  x  ~~  x
276, 262th 174 . . . 4  |-  ( x  e.  _V  <->  x  ~~  x )
2827a1i 9 . . 3  |-  ( T. 
->  ( x  e.  _V  <->  x 
~~  x ) )
292, 12, 25, 28iserd 6561 . 2  |-  ( T. 
->  ~~  Er  _V )
3029mptru 1362 1  |-  ~~  Er  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   T. wtru 1354   E.wex 1492    e. wcel 2148   _Vcvv 2738   class class class wbr 4004   `'ccnv 4626    o. ccom 4631   Rel wrel 4632   -1-1-onto->wf1o 5216    Er wer 6532    ~~ cen 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-er 6535  df-en 6741
This theorem is referenced by:  ensymb  6780  entr  6784
  Copyright terms: Public domain W3C validator