ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st Unicode version

Theorem fo1st 6245
Description: The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st  |-  1st : _V -onto-> _V

Proof of Theorem fo1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . . 6  |-  x  e. 
_V
21snex 4230 . . . . 5  |-  { x }  e.  _V
32dmex 4946 . . . 4  |-  dom  {
x }  e.  _V
43uniex 4485 . . 3  |-  U. dom  { x }  e.  _V
5 df-1st 6228 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
64, 5fnmpti 5406 . 2  |-  1st  Fn  _V
75rnmpt 4927 . . 3  |-  ran  1st  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
8 vex 2775 . . . . 5  |-  y  e. 
_V
98, 8opex 4274 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op1sta 5165 . . . . . . 7  |-  U. dom  {
<. y ,  y >. }  =  y
1110eqcomi 2209 . . . . . 6  |-  y  = 
U. dom  { <. y ,  y >. }
12 sneq 3644 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312dmeqd 4881 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  dom  { x }  =  dom  { <. y ,  y >. } )
1413unieqd 3861 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  y >. } )
1514eqeq2d 2217 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. dom  { x } 
<->  y  =  U. dom  {
<. y ,  y >. } ) )
1615rspcev 2877 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. dom  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. dom  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. dom  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. dom  { x } )
1918abbi2i 2320 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
207, 19eqtr4i 2229 . 2  |-  ran  1st  =  _V
21 df-fo 5278 . 2  |-  ( 1st
: _V -onto-> _V  <->  ( 1st  Fn 
_V  /\  ran  1st  =  _V ) )
226, 20, 21mpbir2an 945 1  |-  1st : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772   {csn 3633   <.cop 3636   U.cuni 3850   dom cdm 4676   ran crn 4677    Fn wfn 5267   -onto->wfo 5270   1stc1st 6226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-fun 5274  df-fn 5275  df-fo 5278  df-1st 6228
This theorem is referenced by:  1stcof  6251  1stexg  6255  df1st2  6307  1stconst  6309  algrflem  6317  algrflemg  6318  suplocexprlemell  7828  suplocexprlem2b  7829  suplocexprlemlub  7839  upxp  14777  uptx  14779  cnmpt1st  14793
  Copyright terms: Public domain W3C validator