ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st Unicode version

Theorem fo1st 6099
Description: The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st  |-  1st : _V -onto-> _V

Proof of Theorem fo1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2715 . . . . . 6  |-  x  e. 
_V
21snex 4145 . . . . 5  |-  { x }  e.  _V
32dmex 4849 . . . 4  |-  dom  {
x }  e.  _V
43uniex 4396 . . 3  |-  U. dom  { x }  e.  _V
5 df-1st 6082 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
64, 5fnmpti 5295 . 2  |-  1st  Fn  _V
75rnmpt 4831 . . 3  |-  ran  1st  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
8 vex 2715 . . . . 5  |-  y  e. 
_V
98, 8opex 4188 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op1sta 5064 . . . . . . 7  |-  U. dom  {
<. y ,  y >. }  =  y
1110eqcomi 2161 . . . . . 6  |-  y  = 
U. dom  { <. y ,  y >. }
12 sneq 3571 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312dmeqd 4785 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  dom  { x }  =  dom  { <. y ,  y >. } )
1413unieqd 3783 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  y >. } )
1514eqeq2d 2169 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. dom  { x } 
<->  y  =  U. dom  {
<. y ,  y >. } ) )
1615rspcev 2816 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. dom  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. dom  {
x } )
179, 11, 16mp2an 423 . . . . 5  |-  E. x  e.  _V  y  =  U. dom  { x }
188, 172th 173 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. dom  { x } )
1918abbi2i 2272 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
207, 19eqtr4i 2181 . 2  |-  ran  1st  =  _V
21 df-fo 5173 . 2  |-  ( 1st
: _V -onto-> _V  <->  ( 1st  Fn 
_V  /\  ran  1st  =  _V ) )
226, 20, 21mpbir2an 927 1  |-  1st : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1335    e. wcel 2128   {cab 2143   E.wrex 2436   _Vcvv 2712   {csn 3560   <.cop 3563   U.cuni 3772   dom cdm 4583   ran crn 4584    Fn wfn 5162   -onto->wfo 5165   1stc1st 6080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-fun 5169  df-fn 5170  df-fo 5173  df-1st 6082
This theorem is referenced by:  1stcof  6105  1stexg  6109  df1st2  6160  1stconst  6162  algrflem  6170  algrflemg  6171  suplocexprlemell  7616  suplocexprlem2b  7617  suplocexprlemlub  7627  upxp  12632  uptx  12634  cnmpt1st  12648
  Copyright terms: Public domain W3C validator