ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st Unicode version

Theorem fo1st 6212
Description: The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st  |-  1st : _V -onto-> _V

Proof of Theorem fo1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . 6  |-  x  e. 
_V
21snex 4215 . . . . 5  |-  { x }  e.  _V
32dmex 4929 . . . 4  |-  dom  {
x }  e.  _V
43uniex 4469 . . 3  |-  U. dom  { x }  e.  _V
5 df-1st 6195 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
64, 5fnmpti 5383 . 2  |-  1st  Fn  _V
75rnmpt 4911 . . 3  |-  ran  1st  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
8 vex 2763 . . . . 5  |-  y  e. 
_V
98, 8opex 4259 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op1sta 5148 . . . . . . 7  |-  U. dom  {
<. y ,  y >. }  =  y
1110eqcomi 2197 . . . . . 6  |-  y  = 
U. dom  { <. y ,  y >. }
12 sneq 3630 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312dmeqd 4865 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  dom  { x }  =  dom  { <. y ,  y >. } )
1413unieqd 3847 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  y >. } )
1514eqeq2d 2205 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. dom  { x } 
<->  y  =  U. dom  {
<. y ,  y >. } ) )
1615rspcev 2865 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. dom  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. dom  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. dom  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. dom  { x } )
1918abbi2i 2308 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
207, 19eqtr4i 2217 . 2  |-  ran  1st  =  _V
21 df-fo 5261 . 2  |-  ( 1st
: _V -onto-> _V  <->  ( 1st  Fn 
_V  /\  ran  1st  =  _V ) )
226, 20, 21mpbir2an 944 1  |-  1st : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760   {csn 3619   <.cop 3622   U.cuni 3836   dom cdm 4660   ran crn 4661    Fn wfn 5250   -onto->wfo 5253   1stc1st 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-fo 5261  df-1st 6195
This theorem is referenced by:  1stcof  6218  1stexg  6222  df1st2  6274  1stconst  6276  algrflem  6284  algrflemg  6285  suplocexprlemell  7775  suplocexprlem2b  7776  suplocexprlemlub  7786  upxp  14451  uptx  14453  cnmpt1st  14467
  Copyright terms: Public domain W3C validator