| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo1st | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| fo1st |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . . 6
| |
| 2 | 1 | snex 4269 |
. . . . 5
|
| 3 | 2 | dmex 4991 |
. . . 4
|
| 4 | 3 | uniex 4528 |
. . 3
|
| 5 | df-1st 6286 |
. . 3
| |
| 6 | 4, 5 | fnmpti 5452 |
. 2
|
| 7 | 5 | rnmpt 4972 |
. . 3
|
| 8 | vex 2802 |
. . . . 5
| |
| 9 | 8, 8 | opex 4315 |
. . . . . 6
|
| 10 | 8, 8 | op1sta 5210 |
. . . . . . 7
|
| 11 | 10 | eqcomi 2233 |
. . . . . 6
|
| 12 | sneq 3677 |
. . . . . . . . . 10
| |
| 13 | 12 | dmeqd 4925 |
. . . . . . . . 9
|
| 14 | 13 | unieqd 3899 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2241 |
. . . . . . 7
|
| 16 | 15 | rspcev 2907 |
. . . . . 6
|
| 17 | 9, 11, 16 | mp2an 426 |
. . . . 5
|
| 18 | 8, 17 | 2th 174 |
. . . 4
|
| 19 | 18 | abbi2i 2344 |
. . 3
|
| 20 | 7, 19 | eqtr4i 2253 |
. 2
|
| 21 | df-fo 5324 |
. 2
| |
| 22 | 6, 20, 21 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-fo 5324 df-1st 6286 |
| This theorem is referenced by: 1stcof 6309 1stexg 6313 df1st2 6365 1stconst 6367 algrflem 6375 algrflemg 6376 suplocexprlemell 7900 suplocexprlem2b 7901 suplocexprlemlub 7911 upxp 14946 uptx 14948 cnmpt1st 14962 |
| Copyright terms: Public domain | W3C validator |