ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st Unicode version

Theorem fo1st 6243
Description: The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st  |-  1st : _V -onto-> _V

Proof of Theorem fo1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . . 6  |-  x  e. 
_V
21snex 4229 . . . . 5  |-  { x }  e.  _V
32dmex 4945 . . . 4  |-  dom  {
x }  e.  _V
43uniex 4484 . . 3  |-  U. dom  { x }  e.  _V
5 df-1st 6226 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
64, 5fnmpti 5404 . 2  |-  1st  Fn  _V
75rnmpt 4926 . . 3  |-  ran  1st  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
8 vex 2775 . . . . 5  |-  y  e. 
_V
98, 8opex 4273 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op1sta 5164 . . . . . . 7  |-  U. dom  {
<. y ,  y >. }  =  y
1110eqcomi 2209 . . . . . 6  |-  y  = 
U. dom  { <. y ,  y >. }
12 sneq 3644 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312dmeqd 4880 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  dom  { x }  =  dom  { <. y ,  y >. } )
1413unieqd 3861 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  y >. } )
1514eqeq2d 2217 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. dom  { x } 
<->  y  =  U. dom  {
<. y ,  y >. } ) )
1615rspcev 2877 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. dom  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. dom  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. dom  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. dom  { x } )
1918abbi2i 2320 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
207, 19eqtr4i 2229 . 2  |-  ran  1st  =  _V
21 df-fo 5277 . 2  |-  ( 1st
: _V -onto-> _V  <->  ( 1st  Fn 
_V  /\  ran  1st  =  _V ) )
226, 20, 21mpbir2an 945 1  |-  1st : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772   {csn 3633   <.cop 3636   U.cuni 3850   dom cdm 4675   ran crn 4676    Fn wfn 5266   -onto->wfo 5269   1stc1st 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-fo 5277  df-1st 6226
This theorem is referenced by:  1stcof  6249  1stexg  6253  df1st2  6305  1stconst  6307  algrflem  6315  algrflemg  6316  suplocexprlemell  7826  suplocexprlem2b  7827  suplocexprlemlub  7837  upxp  14744  uptx  14746  cnmpt1st  14760
  Copyright terms: Public domain W3C validator