ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo1st Unicode version

Theorem fo1st 6224
Description: The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo1st  |-  1st : _V -onto-> _V

Proof of Theorem fo1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . 6  |-  x  e. 
_V
21snex 4219 . . . . 5  |-  { x }  e.  _V
32dmex 4933 . . . 4  |-  dom  {
x }  e.  _V
43uniex 4473 . . 3  |-  U. dom  { x }  e.  _V
5 df-1st 6207 . . 3  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
64, 5fnmpti 5389 . 2  |-  1st  Fn  _V
75rnmpt 4915 . . 3  |-  ran  1st  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
8 vex 2766 . . . . 5  |-  y  e. 
_V
98, 8opex 4263 . . . . . 6  |-  <. y ,  y >.  e.  _V
108, 8op1sta 5152 . . . . . . 7  |-  U. dom  {
<. y ,  y >. }  =  y
1110eqcomi 2200 . . . . . 6  |-  y  = 
U. dom  { <. y ,  y >. }
12 sneq 3634 . . . . . . . . . 10  |-  ( x  =  <. y ,  y
>.  ->  { x }  =  { <. y ,  y
>. } )
1312dmeqd 4869 . . . . . . . . 9  |-  ( x  =  <. y ,  y
>.  ->  dom  { x }  =  dom  { <. y ,  y >. } )
1413unieqd 3851 . . . . . . . 8  |-  ( x  =  <. y ,  y
>.  ->  U. dom  { x }  =  U. dom  { <. y ,  y >. } )
1514eqeq2d 2208 . . . . . . 7  |-  ( x  =  <. y ,  y
>.  ->  ( y  = 
U. dom  { x } 
<->  y  =  U. dom  {
<. y ,  y >. } ) )
1615rspcev 2868 . . . . . 6  |-  ( (
<. y ,  y >.  e.  _V  /\  y  = 
U. dom  { <. y ,  y >. } )  ->  E. x  e.  _V  y  =  U. dom  {
x } )
179, 11, 16mp2an 426 . . . . 5  |-  E. x  e.  _V  y  =  U. dom  { x }
188, 172th 174 . . . 4  |-  ( y  e.  _V  <->  E. x  e.  _V  y  =  U. dom  { x } )
1918abbi2i 2311 . . 3  |-  _V  =  { y  |  E. x  e.  _V  y  =  U. dom  { x } }
207, 19eqtr4i 2220 . 2  |-  ran  1st  =  _V
21 df-fo 5265 . 2  |-  ( 1st
: _V -onto-> _V  <->  ( 1st  Fn 
_V  /\  ran  1st  =  _V ) )
226, 20, 21mpbir2an 944 1  |-  1st : _V -onto-> _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   {csn 3623   <.cop 3626   U.cuni 3840   dom cdm 4664   ran crn 4665    Fn wfn 5254   -onto->wfo 5257   1stc1st 6205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-fo 5265  df-1st 6207
This theorem is referenced by:  1stcof  6230  1stexg  6234  df1st2  6286  1stconst  6288  algrflem  6296  algrflemg  6297  suplocexprlemell  7797  suplocexprlem2b  7798  suplocexprlemlub  7808  upxp  14592  uptx  14594  cnmpt1st  14608
  Copyright terms: Public domain W3C validator