| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snnex | Unicode version | ||
| Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
| Ref | Expression |
|---|---|
| snnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4192 |
. . . 4
| |
| 2 | vsnid 3675 |
. . . . . . . . 9
| |
| 3 | a9ev 1721 |
. . . . . . . . . 10
| |
| 4 | sneq 3654 |
. . . . . . . . . . 11
| |
| 5 | 4 | equcoms 1732 |
. . . . . . . . . 10
|
| 6 | 3, 5 | eximii 1626 |
. . . . . . . . 9
|
| 7 | vex 2779 |
. . . . . . . . . . 11
| |
| 8 | 7 | snex 4245 |
. . . . . . . . . 10
|
| 9 | eleq2 2271 |
. . . . . . . . . . 11
| |
| 10 | eqeq1 2214 |
. . . . . . . . . . . 12
| |
| 11 | 10 | exbidv 1849 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | anbi12d 473 |
. . . . . . . . . 10
|
| 13 | 8, 12 | spcev 2875 |
. . . . . . . . 9
|
| 14 | 2, 6, 13 | mp2an 426 |
. . . . . . . 8
|
| 15 | eluniab 3876 |
. . . . . . . 8
| |
| 16 | 14, 15 | mpbir 146 |
. . . . . . 7
|
| 17 | 16, 7 | 2th 174 |
. . . . . 6
|
| 18 | 17 | eqriv 2204 |
. . . . 5
|
| 19 | 18 | eleq1i 2273 |
. . . 4
|
| 20 | 1, 19 | mtbir 673 |
. . 3
|
| 21 | uniexg 4504 |
. . 3
| |
| 22 | 20, 21 | mto 664 |
. 2
|
| 23 | 22 | nelir 2476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-nel 2474 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-uni 3865 |
| This theorem is referenced by: fiprc 6931 |
| Copyright terms: Public domain | W3C validator |