Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnex | Unicode version |
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
Ref | Expression |
---|---|
snnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4096 | . . . 4 | |
2 | vsnid 3592 | . . . . . . . . 9 | |
3 | a9ev 1677 | . . . . . . . . . 10 | |
4 | sneq 3571 | . . . . . . . . . . 11 | |
5 | 4 | equcoms 1688 | . . . . . . . . . 10 |
6 | 3, 5 | eximii 1582 | . . . . . . . . 9 |
7 | vex 2715 | . . . . . . . . . . 11 | |
8 | 7 | snex 4145 | . . . . . . . . . 10 |
9 | eleq2 2221 | . . . . . . . . . . 11 | |
10 | eqeq1 2164 | . . . . . . . . . . . 12 | |
11 | 10 | exbidv 1805 | . . . . . . . . . . 11 |
12 | 9, 11 | anbi12d 465 | . . . . . . . . . 10 |
13 | 8, 12 | spcev 2807 | . . . . . . . . 9 |
14 | 2, 6, 13 | mp2an 423 | . . . . . . . 8 |
15 | eluniab 3784 | . . . . . . . 8 | |
16 | 14, 15 | mpbir 145 | . . . . . . 7 |
17 | 16, 7 | 2th 173 | . . . . . 6 |
18 | 17 | eqriv 2154 | . . . . 5 |
19 | 18 | eleq1i 2223 | . . . 4 |
20 | 1, 19 | mtbir 661 | . . 3 |
21 | uniexg 4398 | . . 3 | |
22 | 20, 21 | mto 652 | . 2 |
23 | 22 | nelir 2425 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1335 wex 1472 wcel 2128 cab 2143 wnel 2422 cvv 2712 csn 3560 cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-nel 2423 df-rex 2441 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-uni 3773 |
This theorem is referenced by: fiprc 6753 |
Copyright terms: Public domain | W3C validator |