Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnex | Unicode version |
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
Ref | Expression |
---|---|
snnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4130 | . . . 4 | |
2 | vsnid 3621 | . . . . . . . . 9 | |
3 | a9ev 1695 | . . . . . . . . . 10 | |
4 | sneq 3600 | . . . . . . . . . . 11 | |
5 | 4 | equcoms 1706 | . . . . . . . . . 10 |
6 | 3, 5 | eximii 1600 | . . . . . . . . 9 |
7 | vex 2738 | . . . . . . . . . . 11 | |
8 | 7 | snex 4180 | . . . . . . . . . 10 |
9 | eleq2 2239 | . . . . . . . . . . 11 | |
10 | eqeq1 2182 | . . . . . . . . . . . 12 | |
11 | 10 | exbidv 1823 | . . . . . . . . . . 11 |
12 | 9, 11 | anbi12d 473 | . . . . . . . . . 10 |
13 | 8, 12 | spcev 2830 | . . . . . . . . 9 |
14 | 2, 6, 13 | mp2an 426 | . . . . . . . 8 |
15 | eluniab 3817 | . . . . . . . 8 | |
16 | 14, 15 | mpbir 146 | . . . . . . 7 |
17 | 16, 7 | 2th 174 | . . . . . 6 |
18 | 17 | eqriv 2172 | . . . . 5 |
19 | 18 | eleq1i 2241 | . . . 4 |
20 | 1, 19 | mtbir 671 | . . 3 |
21 | uniexg 4433 | . . 3 | |
22 | 20, 21 | mto 662 | . 2 |
23 | 22 | nelir 2443 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wex 1490 wcel 2146 cab 2161 wnel 2440 cvv 2735 csn 3589 cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-nel 2441 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-uni 3806 |
This theorem is referenced by: fiprc 6805 |
Copyright terms: Public domain | W3C validator |