ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnex Unicode version

Theorem snnex 4448
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
Assertion
Ref Expression
snnex  |-  { x  |  E. y  x  =  { y } }  e/  _V
Distinct variable group:    x, y

Proof of Theorem snnex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vprc 4135 . . . 4  |-  -.  _V  e.  _V
2 vsnid 3624 . . . . . . . . 9  |-  z  e. 
{ z }
3 a9ev 1697 . . . . . . . . . 10  |-  E. y 
y  =  z
4 sneq 3603 . . . . . . . . . . 11  |-  ( z  =  y  ->  { z }  =  { y } )
54equcoms 1708 . . . . . . . . . 10  |-  ( y  =  z  ->  { z }  =  { y } )
63, 5eximii 1602 . . . . . . . . 9  |-  E. y { z }  =  { y }
7 vex 2740 . . . . . . . . . . 11  |-  z  e. 
_V
87snex 4185 . . . . . . . . . 10  |-  { z }  e.  _V
9 eleq2 2241 . . . . . . . . . . 11  |-  ( x  =  { z }  ->  ( z  e.  x  <->  z  e.  {
z } ) )
10 eqeq1 2184 . . . . . . . . . . . 12  |-  ( x  =  { z }  ->  ( x  =  { y }  <->  { z }  =  { y } ) )
1110exbidv 1825 . . . . . . . . . . 11  |-  ( x  =  { z }  ->  ( E. y  x  =  { y } 
<->  E. y { z }  =  { y } ) )
129, 11anbi12d 473 . . . . . . . . . 10  |-  ( x  =  { z }  ->  ( ( z  e.  x  /\  E. y  x  =  {
y } )  <->  ( z  e.  { z }  /\  E. y { z }  =  { y } ) ) )
138, 12spcev 2832 . . . . . . . . 9  |-  ( ( z  e.  { z }  /\  E. y { z }  =  { y } )  ->  E. x ( z  e.  x  /\  E. y  x  =  {
y } ) )
142, 6, 13mp2an 426 . . . . . . . 8  |-  E. x
( z  e.  x  /\  E. y  x  =  { y } )
15 eluniab 3821 . . . . . . . 8  |-  ( z  e.  U. { x  |  E. y  x  =  { y } }  <->  E. x ( z  e.  x  /\  E. y  x  =  { y } ) )
1614, 15mpbir 146 . . . . . . 7  |-  z  e. 
U. { x  |  E. y  x  =  { y } }
1716, 72th 174 . . . . . 6  |-  ( z  e.  U. { x  |  E. y  x  =  { y } }  <->  z  e.  _V )
1817eqriv 2174 . . . . 5  |-  U. {
x  |  E. y  x  =  { y } }  =  _V
1918eleq1i 2243 . . . 4  |-  ( U. { x  |  E. y  x  =  {
y } }  e.  _V 
<->  _V  e.  _V )
201, 19mtbir 671 . . 3  |-  -.  U. { x  |  E. y  x  =  {
y } }  e.  _V
21 uniexg 4439 . . 3  |-  ( { x  |  E. y  x  =  { y } }  e.  _V  ->  U. { x  |  E. y  x  =  { y } }  e.  _V )
2220, 21mto 662 . 2  |-  -.  {
x  |  E. y  x  =  { y } }  e.  _V
2322nelir 2445 1  |-  { x  |  E. y  x  =  { y } }  e/  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163    e/ wnel 2442   _Vcvv 2737   {csn 3592   U.cuni 3809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-rex 2461  df-v 2739  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-uni 3810
This theorem is referenced by:  fiprc  6814
  Copyright terms: Public domain W3C validator