Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snnex | Unicode version |
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) |
Ref | Expression |
---|---|
snnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4114 | . . . 4 | |
2 | vsnid 3608 | . . . . . . . . 9 | |
3 | a9ev 1685 | . . . . . . . . . 10 | |
4 | sneq 3587 | . . . . . . . . . . 11 | |
5 | 4 | equcoms 1696 | . . . . . . . . . 10 |
6 | 3, 5 | eximii 1590 | . . . . . . . . 9 |
7 | vex 2729 | . . . . . . . . . . 11 | |
8 | 7 | snex 4164 | . . . . . . . . . 10 |
9 | eleq2 2230 | . . . . . . . . . . 11 | |
10 | eqeq1 2172 | . . . . . . . . . . . 12 | |
11 | 10 | exbidv 1813 | . . . . . . . . . . 11 |
12 | 9, 11 | anbi12d 465 | . . . . . . . . . 10 |
13 | 8, 12 | spcev 2821 | . . . . . . . . 9 |
14 | 2, 6, 13 | mp2an 423 | . . . . . . . 8 |
15 | eluniab 3801 | . . . . . . . 8 | |
16 | 14, 15 | mpbir 145 | . . . . . . 7 |
17 | 16, 7 | 2th 173 | . . . . . 6 |
18 | 17 | eqriv 2162 | . . . . 5 |
19 | 18 | eleq1i 2232 | . . . 4 |
20 | 1, 19 | mtbir 661 | . . 3 |
21 | uniexg 4417 | . . 3 | |
22 | 20, 21 | mto 652 | . 2 |
23 | 22 | nelir 2434 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 wnel 2431 cvv 2726 csn 3576 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-nel 2432 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-uni 3790 |
This theorem is referenced by: fiprc 6781 |
Copyright terms: Public domain | W3C validator |