ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdifpr Unicode version

Theorem hashdifpr 11002
Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
Assertion
Ref Expression
hashdifpr  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( ( `  A )  -  2 ) )

Proof of Theorem hashdifpr
StepHypRef Expression
1 difpr 3786 . . . 4  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )
21a1i 9 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( A  \  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } ) )
32fveq2d 5603 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( `  ( ( A  \  { B } )  \  { C } ) ) )
4 simpl 109 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  A  e.  Fin )
5 snfig 6930 . . . . . 6  |-  ( B  e.  A  ->  { B }  e.  Fin )
653ad2ant1 1021 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  A  /\  B  =/=  C )  ->  { B }  e.  Fin )
76adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  { B }  e.  Fin )
8 snssi 3788 . . . . . 6  |-  ( B  e.  A  ->  { B }  C_  A )
983ad2ant1 1021 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  A  /\  B  =/=  C )  ->  { B }  C_  A
)
109adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  { B }  C_  A )
11 diffifi 7017 . . . 4  |-  ( ( A  e.  Fin  /\  { B }  e.  Fin  /\ 
{ B }  C_  A )  ->  ( A  \  { B }
)  e.  Fin )
124, 7, 10, 11syl3anc 1250 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( A  \  { B }
)  e.  Fin )
13 simpr2 1007 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  e.  A )
14 simpr3 1008 . . . . 5  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  B  =/=  C )
1514necomd 2464 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  =/=  B )
16 eldifsn 3771 . . . 4  |-  ( C  e.  ( A  \  { B } )  <->  ( C  e.  A  /\  C  =/= 
B ) )
1713, 15, 16sylanbrc 417 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  e.  ( A  \  { B } ) )
18 hashdifsn 11001 . . 3  |-  ( ( ( A  \  { B } )  e.  Fin  /\  C  e.  ( A 
\  { B }
) )  ->  ( `  ( ( A  \  { B } )  \  { C } ) )  =  ( ( `  ( A  \  { B }
) )  -  1 ) )
1912, 17, 18syl2anc 411 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( ( A  \  { B } )  \  { C } ) )  =  ( ( `  ( A  \  { B }
) )  -  1 ) )
20 hashdifsn 11001 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( `  ( A  \  { B } ) )  =  ( ( `  A )  -  1 ) )
21203ad2antr1 1165 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B } ) )  =  ( ( `  A
)  -  1 ) )
2221oveq1d 5982 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( `  ( A  \  { B } ) )  -  1 )  =  ( ( ( `  A
)  -  1 )  -  1 ) )
23 hashcl 10963 . . . . . 6  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
2423nn0cnd 9385 . . . . 5  |-  ( A  e.  Fin  ->  ( `  A )  e.  CC )
25 sub1m1 9323 . . . . 5  |-  ( ( `  A )  e.  CC  ->  ( ( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2624, 25syl 14 . . . 4  |-  ( A  e.  Fin  ->  (
( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2726adantr 276 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2822, 27eqtrd 2240 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( `  ( A  \  { B } ) )  -  1 )  =  ( ( `  A
)  -  2 ) )
293, 19, 283eqtrd 2244 1  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( ( `  A )  -  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378    \ cdif 3171    C_ wss 3174   {csn 3643   {cpr 3644   ` cfv 5290  (class class class)co 5967   Fincfn 6850   CCcc 7958   1c1 7961    - cmin 8278   2c2 9122  ♯chash 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-ihash 10958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator