ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdifpr Unicode version

Theorem hashdifpr 10965
Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
Assertion
Ref Expression
hashdifpr  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( ( `  A )  -  2 ) )

Proof of Theorem hashdifpr
StepHypRef Expression
1 difpr 3775 . . . 4  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )
21a1i 9 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( A  \  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } ) )
32fveq2d 5580 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( `  ( ( A  \  { B } )  \  { C } ) ) )
4 simpl 109 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  A  e.  Fin )
5 snfig 6906 . . . . . 6  |-  ( B  e.  A  ->  { B }  e.  Fin )
653ad2ant1 1021 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  A  /\  B  =/=  C )  ->  { B }  e.  Fin )
76adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  { B }  e.  Fin )
8 snssi 3777 . . . . . 6  |-  ( B  e.  A  ->  { B }  C_  A )
983ad2ant1 1021 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  A  /\  B  =/=  C )  ->  { B }  C_  A
)
109adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  { B }  C_  A )
11 diffifi 6991 . . . 4  |-  ( ( A  e.  Fin  /\  { B }  e.  Fin  /\ 
{ B }  C_  A )  ->  ( A  \  { B }
)  e.  Fin )
124, 7, 10, 11syl3anc 1250 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( A  \  { B }
)  e.  Fin )
13 simpr2 1007 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  e.  A )
14 simpr3 1008 . . . . 5  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  B  =/=  C )
1514necomd 2462 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  =/=  B )
16 eldifsn 3760 . . . 4  |-  ( C  e.  ( A  \  { B } )  <->  ( C  e.  A  /\  C  =/= 
B ) )
1713, 15, 16sylanbrc 417 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  e.  ( A  \  { B } ) )
18 hashdifsn 10964 . . 3  |-  ( ( ( A  \  { B } )  e.  Fin  /\  C  e.  ( A 
\  { B }
) )  ->  ( `  ( ( A  \  { B } )  \  { C } ) )  =  ( ( `  ( A  \  { B }
) )  -  1 ) )
1912, 17, 18syl2anc 411 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( ( A  \  { B } )  \  { C } ) )  =  ( ( `  ( A  \  { B }
) )  -  1 ) )
20 hashdifsn 10964 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( `  ( A  \  { B } ) )  =  ( ( `  A )  -  1 ) )
21203ad2antr1 1165 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B } ) )  =  ( ( `  A
)  -  1 ) )
2221oveq1d 5959 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( `  ( A  \  { B } ) )  -  1 )  =  ( ( ( `  A
)  -  1 )  -  1 ) )
23 hashcl 10926 . . . . . 6  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
2423nn0cnd 9350 . . . . 5  |-  ( A  e.  Fin  ->  ( `  A )  e.  CC )
25 sub1m1 9288 . . . . 5  |-  ( ( `  A )  e.  CC  ->  ( ( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2624, 25syl 14 . . . 4  |-  ( A  e.  Fin  ->  (
( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2726adantr 276 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2822, 27eqtrd 2238 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( `  ( A  \  { B } ) )  -  1 )  =  ( ( `  A
)  -  2 ) )
293, 19, 283eqtrd 2242 1  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( ( `  A )  -  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376    \ cdif 3163    C_ wss 3166   {csn 3633   {cpr 3634   ` cfv 5271  (class class class)co 5944   Fincfn 6827   CCcc 7923   1c1 7926    - cmin 8243   2c2 9087  ♯chash 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-ihash 10921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator