ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdifpr Unicode version

Theorem hashdifpr 10912
Description: The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
Assertion
Ref Expression
hashdifpr  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( ( `  A )  -  2 ) )

Proof of Theorem hashdifpr
StepHypRef Expression
1 difpr 3764 . . . 4  |-  ( A 
\  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } )
21a1i 9 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( A  \  { B ,  C } )  =  ( ( A  \  { B } )  \  { C } ) )
32fveq2d 5562 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( `  ( ( A  \  { B } )  \  { C } ) ) )
4 simpl 109 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  A  e.  Fin )
5 snfig 6873 . . . . . 6  |-  ( B  e.  A  ->  { B }  e.  Fin )
653ad2ant1 1020 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  A  /\  B  =/=  C )  ->  { B }  e.  Fin )
76adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  { B }  e.  Fin )
8 snssi 3766 . . . . . 6  |-  ( B  e.  A  ->  { B }  C_  A )
983ad2ant1 1020 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  A  /\  B  =/=  C )  ->  { B }  C_  A
)
109adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  { B }  C_  A )
11 diffifi 6955 . . . 4  |-  ( ( A  e.  Fin  /\  { B }  e.  Fin  /\ 
{ B }  C_  A )  ->  ( A  \  { B }
)  e.  Fin )
124, 7, 10, 11syl3anc 1249 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( A  \  { B }
)  e.  Fin )
13 simpr2 1006 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  e.  A )
14 simpr3 1007 . . . . 5  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  B  =/=  C )
1514necomd 2453 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  =/=  B )
16 eldifsn 3749 . . . 4  |-  ( C  e.  ( A  \  { B } )  <->  ( C  e.  A  /\  C  =/= 
B ) )
1713, 15, 16sylanbrc 417 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  C  e.  ( A  \  { B } ) )
18 hashdifsn 10911 . . 3  |-  ( ( ( A  \  { B } )  e.  Fin  /\  C  e.  ( A 
\  { B }
) )  ->  ( `  ( ( A  \  { B } )  \  { C } ) )  =  ( ( `  ( A  \  { B }
) )  -  1 ) )
1912, 17, 18syl2anc 411 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( ( A  \  { B } )  \  { C } ) )  =  ( ( `  ( A  \  { B }
) )  -  1 ) )
20 hashdifsn 10911 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( `  ( A  \  { B } ) )  =  ( ( `  A )  -  1 ) )
21203ad2antr1 1164 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B } ) )  =  ( ( `  A
)  -  1 ) )
2221oveq1d 5937 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( `  ( A  \  { B } ) )  -  1 )  =  ( ( ( `  A
)  -  1 )  -  1 ) )
23 hashcl 10873 . . . . . 6  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
2423nn0cnd 9304 . . . . 5  |-  ( A  e.  Fin  ->  ( `  A )  e.  CC )
25 sub1m1 9242 . . . . 5  |-  ( ( `  A )  e.  CC  ->  ( ( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2624, 25syl 14 . . . 4  |-  ( A  e.  Fin  ->  (
( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2726adantr 276 . . 3  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( ( `  A
)  -  1 )  -  1 )  =  ( ( `  A
)  -  2 ) )
2822, 27eqtrd 2229 . 2  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  (
( `  ( A  \  { B } ) )  -  1 )  =  ( ( `  A
)  -  2 ) )
293, 19, 283eqtrd 2233 1  |-  ( ( A  e.  Fin  /\  ( B  e.  A  /\  C  e.  A  /\  B  =/=  C
) )  ->  ( `  ( A  \  { B ,  C }
) )  =  ( ( `  A )  -  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154    C_ wss 3157   {csn 3622   {cpr 3623   ` cfv 5258  (class class class)co 5922   Fincfn 6799   CCcc 7877   1c1 7880    - cmin 8197   2c2 9041  ♯chash 10867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-ihash 10868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator