Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srgdilem | Unicode version |
Description: Lemma for srgdi 12950 and srgdir 12951. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgdilem.b | |
srgdilem.p | |
srgdilem.t |
Ref | Expression |
---|---|
srgdilem | SRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgdilem.b | . . . . . . . . . . 11 | |
2 | eqid 2175 | . . . . . . . . . . 11 mulGrp mulGrp | |
3 | srgdilem.p | . . . . . . . . . . 11 | |
4 | srgdilem.t | . . . . . . . . . . 11 | |
5 | eqid 2175 | . . . . . . . . . . 11 | |
6 | 1, 2, 3, 4, 5 | issrg 12941 | . . . . . . . . . 10 SRing CMnd mulGrp |
7 | 6 | simp3bi 1014 | . . . . . . . . 9 SRing |
8 | 7 | r19.21bi 2563 | . . . . . . . 8 SRing |
9 | 8 | simpld 112 | . . . . . . 7 SRing |
10 | 9 | 3ad2antr1 1162 | . . . . . 6 SRing |
11 | simpr2 1004 | . . . . . 6 SRing | |
12 | rsp 2522 | . . . . . 6 | |
13 | 10, 11, 12 | sylc 62 | . . . . 5 SRing |
14 | simpr3 1005 | . . . . 5 SRing | |
15 | rsp 2522 | . . . . 5 | |
16 | 13, 14, 15 | sylc 62 | . . . 4 SRing |
17 | 16 | simpld 112 | . . 3 SRing |
18 | 17 | caovdig 6039 | . 2 SRing |
19 | 16 | simprd 114 | . . 3 SRing |
20 | 19 | caovdirg 6042 | . 2 SRing |
21 | 18, 20 | jca 306 | 1 SRing |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 cmulr 12493 c0g 12626 cmnd 12682 CMndccmn 12884 mulGrpcmgp 12925 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-plusg 12505 df-mulr 12506 df-0g 12628 df-srg 12940 |
This theorem is referenced by: srgdi 12950 srgdir 12951 |
Copyright terms: Public domain | W3C validator |