Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvconst | Unicode version |
Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
Ref | Expression |
---|---|
dvconst |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5369 | . 2 | |
2 | simpr2 989 | . . . . . . 7 # | |
3 | fvconst2g 5682 | . . . . . . 7 | |
4 | 2, 3 | syldan 280 | . . . . . 6 # |
5 | fvconst2g 5682 | . . . . . . 7 | |
6 | 5 | 3ad2antr1 1147 | . . . . . 6 # |
7 | 4, 6 | oveq12d 5843 | . . . . 5 # |
8 | subid 8095 | . . . . . 6 | |
9 | 8 | adantr 274 | . . . . 5 # |
10 | 7, 9 | eqtrd 2190 | . . . 4 # |
11 | 10 | oveq1d 5840 | . . 3 # |
12 | simpr1 988 | . . . . 5 # | |
13 | 2, 12 | subcld 8187 | . . . 4 # |
14 | simpr3 990 | . . . . 5 # # | |
15 | 2, 12, 14 | subap0d 8520 | . . . 4 # # |
16 | 13, 15 | div0apd 8661 | . . 3 # |
17 | 11, 16 | eqtrd 2190 | . 2 # |
18 | 0cn 7871 | . 2 | |
19 | 1, 17, 18 | dvidlemap 13102 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 csn 3560 class class class wbr 3966 cxp 4585 cfv 5171 (class class class)co 5825 cc 7731 cc0 7733 cmin 8047 # cap 8457 cdiv 8546 cdv 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-mulrcl 7832 ax-addcom 7833 ax-mulcom 7834 ax-addass 7835 ax-mulass 7836 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-1rid 7840 ax-0id 7841 ax-rnegex 7842 ax-precex 7843 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-apti 7848 ax-pre-ltadd 7849 ax-pre-mulgt0 7850 ax-pre-mulext 7851 ax-arch 7852 ax-caucvg 7853 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-po 4257 df-iso 4258 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-isom 5180 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-frec 6339 df-map 6596 df-pm 6597 df-sup 6929 df-inf 6930 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-reap 8451 df-ap 8458 df-div 8547 df-inn 8835 df-2 8893 df-3 8894 df-4 8895 df-n0 9092 df-z 9169 df-uz 9441 df-q 9530 df-rp 9562 df-xneg 9680 df-xadd 9681 df-seqfrec 10349 df-exp 10423 df-cj 10746 df-re 10747 df-im 10748 df-rsqrt 10902 df-abs 10903 df-rest 12395 df-topgen 12414 df-psmet 12429 df-xmet 12430 df-met 12431 df-bl 12432 df-mopn 12433 df-top 12438 df-topon 12451 df-bases 12483 df-ntr 12538 df-cn 12630 df-cnp 12631 df-cncf 13000 df-limced 13067 df-dvap 13068 |
This theorem is referenced by: dvexp2 13118 dvmptccn 13121 dvef 13130 |
Copyright terms: Public domain | W3C validator |